Malignant gliomas infiltrate the brain preferentially along myelinated fiber tracts. Central nervous system (CNS) myelin, however, contains inhibitory proteins that block axon regeneration, neurite outgrowth, and cell spreading of astrocytes and fibroblasts. We tested 5 human brain tumor cell lines, 1 rat brain tumor cell line, and 29 short-term cultured specimens from human brain tumors for their ability to spread and migrate on a CNS myelin substrate. Low-grade and pilocytic astrocytoma, ependymoma, medulloblastoma, and meningioma cell lines as well as primary cultures were strongly sensitive to the inhibitory proteins present in the CNS myelin. In contrast, glioblastomas, anaplastic astrocytomas, and oligodendrogliomas were able to spread and migrate on CNS myelin-coated culture dishes, demonstrating that within the gliomas, the ability to overcome the inhibitory effects of the CNS myelin is correlated with the grade of malignancy of the original tumor. Cell spreading of glioblastomas and anaplastic astrocytomas specifically on a CNS myelin substrate was strongly inhibited by the metalloprotease blocker O-phenanthroline and the peptide derivative carbobenzoxy-Phe-Ala-Phe-Tyr-amide, whereas blockers for serine, aspartyl, and cysteine proteases had no effect. Enzymatic peptide degradation assays revealed the presence of a phosphoramidon-sensitive and thiorphan-insensitive metalloproteolytic activity in the plasma membranes of high-grade glioma cells. These results suggest a crucial involvement of a membrane-bound metalloendoprotease in the process of invasive migration of malignant gliomas along CNS white matter fiber tracts.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cns myelin
20
tumor cell
12
central nervous
8
nervous system
8
metalloproteolytic activity
8
malignant gliomas
8
fiber tracts
8
inhibitory proteins
8
cell spreading
8
human brain
8

Similar Publications

White Matter Injury in Central Nervous System Disorders.

Neuropsychiatr Dis Treat

January 2025

Department of Rehabilitation Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People's Republic of China.

As the aging process accelerates and living conditions improve, central nervous system (CNS) diseases have become a major public health problem. Diseases of the CNS cause not only gray matter damage, which is primarily characterized by the loss of neurons, but also white matter damage. However, most previous studies have focused on grey matter injury (GMI), with fewer studies on white matter injury (WMI).

View Article and Find Full Text PDF

NLRX1 limits inflammatory neurodegeneration in the anterior visual pathway.

J Neuroinflammation

January 2025

Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.

Chronic innate immune activation in the central nervous system (CNS) significantly contributes to neurodegeneration in progressive multiple sclerosis (MS). Using multiple experimental autoimmune encephalomyelitis (EAE) models, we discovered that NLRX1 protects neurons in the anterior visual pathway from inflammatory neurodegeneration. We quantified retinal ganglion cell (RGC) density and optic nerve axonal degeneration, gliosis, and T-cell infiltration in Nlrx1 and wild-type (WT) EAE mice and found increased RGC loss and axonal injury in Nlrx1 mice compared to WT mice in both active immunization EAE and spontaneous opticospinal encephalomyelitis (OSE) models.

View Article and Find Full Text PDF

Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a prevalent inflammatory neurodegenerative disease in young people, causing neurological abnormalities and impairment. To investigate a novel therapeutic agent for MS, we observed the impact of maresin 1 (MaR1) on disease progression in a well-known, relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) mouse model. Treatment with MaR1 accelerated inflammation resolution, reduced neurological impairment, and delayed disease development by reducing immune cell infiltration (CD4+IL-17+ and CD4+IFNγ+) into the central nervous system (CNS).

View Article and Find Full Text PDF

The Role of Glial Cells in the Pathophysiology of Epilepsy.

Cells

January 2025

Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye.

Epilepsy is a chronic neurological disorder marked by recurrent seizures, significantly impacting individuals worldwide. Current treatments are often ineffective for a third of patients and can cause severe side effects, necessitating new therapeutic approaches. Glial cells, particularly astrocytes, microglia, and oligodendrocytes, are emerging as crucial targets in epilepsy management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!