The goals of this work were to establish a reproducible and effective model of apoptosis in a cell line derived from advanced prostate cancer and to study the role of the caspase family of proteases in mediating apoptosis in this system. The study involved the use of the prostate cancer cell line LNCaP. Apoptosis was induced using the hydroxymethyl glutaryl CoA reductase inhibitor, lovastatin, and was evaluated by agarose gel electrophoresis of genomic DNA, morphological criteria, and terminal deoxynucleotidyl transferase-mediated nick end labeling. Caspases were studied by catalytic activity, mRNA induction, and protein processing. Lovastatin (30 microM) was an effective inducer of apoptosis, causing changes that were evident after 48 h and essentially complete after 96-120 h of treatment. These effects were prevented by the simultaneous addition of mevalonate (300 microM) to the culture medium. Lovastatin induced a proteolytic activity that was able to cleave the enzyme poly(ADP-ribose) polymerase and the substrate Z-DEVD-AFC, which is modeled after the P1-P4 amino acids of the poly(ADP-ribose) polymerase cleavage site. Caspase-7, but not caspase-3, underwent proteolytic activation during lovastatin-induced apoptosis, an effect prevented by mevalonate. Caspase-7 was the only detected interleukin 1beta converting enzyme family protease with DEVD cleavage activity that exhibited lovastatin-induced mRNA up-regulation. Again, mevalonate blocked this effect. Lovastatin-induced apoptosis also was prevented when the caspase inhibitors Z-DEVD-CH2F or Z-VAD-CH2F (100 microM) where added to the medium. These studies have identified lovastatin as a powerful inducer of apoptosis in the cell line LNCaP. Caspase activation was a necessary event for LNCaP cells to undergo apoptosis during treatment with lovastatin. Of the caspases tested, only caspase-7 underwent proteolytic activation after stimulation with lovastatin. Identification of caspase-7 as a potential mediator of lovastatin-induced apoptosis broadens our knowledge of the molecular events associated with programmed cell death in a cell line derived from prostatic epithelium.
Download full-text PDF |
Source |
---|
Antioxidants (Basel)
May 2024
State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
Statins are 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors widely used in the treatment of hyperlipidemia. The inhibition of HMG-CoA reductase in the mevalonate pathway leads to the suppression of cell proliferation and induction of apoptosis. The cyclic GMP-AMP synthase (cGAS) stimulator of the interferon genes (STING) signaling pathway has been suggested to not only facilitate inflammatory responses and the production of type I interferons (IFN), but also activate other cellular processes, such as apoptosis.
View Article and Find Full Text PDFBMC Cancer
April 2023
State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, People's Republic of China.
Background: Lovastatin, an HMG-CoA inhibitor and an effective cholesterol lowering drug, exhibits anti-neoplastic activity towards several types of cancer, although the underlying mechanism is still not fully understood. Herein, we investigated mechanism of growth inhibition of leukemic cells by lovastatin.
Methods: RNAseq analysis was used to explore the effect of lovastatin on gene expression in leukemic cells.
J Cell Mol Med
January 2020
Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
There is increasing evidence that statins, which are widely used in lowering serum cholesterol and the incidence of cardiovascular diseases, also exhibits anti-tumour properties. The underlying mechanisms by which statins-induced cancer cell death, however, remain incompletely understood. In this study, we explored the anti-tumour mechanisms of a lipophilic statin, lovastatin, in MCF-7 breast cancer cells.
View Article and Find Full Text PDFPLoS One
December 2019
Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China.
p21, an inhibitor of cyclin-dependent kinase, functions as an oncogene or tumor suppressor depending on the context of a variety of extracellular and intracellular signals. The expression of p21 could be regulated at the transcriptional and/or post-translational levels. The p21 gene is well-known to be regulated in both p53-dependent and -independent manners.
View Article and Find Full Text PDFOncotarget
December 2017
Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 805-8555, Japan.
It was reported that statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase that are used to prevent hypercholesterolemia, have antitumor activity in several cancers. In this study, we investigated the cell viability of statins in Cisplatin-resistant HCP4 and PCDP5 cells compared with their parent Hela and PC3 cells, respectively, and found that HCP4 and PCDP5 cells were 37-fold and 18-fold more resistant to Cisplatin but 13-fold and 7-fold more sensitive to Lovastatin by cell proliferation assay. Lovastatin induced the apoptosis of HCP4 cells more rapidly and to greater extent than in Hela cells as assessed by flow cytometry and western blotting analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!