The PTEN (MMAC1) gene, which has been identified as a tumor suppressor gene at 10q23.3, is mutated in multiple malignant tumors, including glioblastomas [J. Li et al., Science (Washington DC), 275: 1943-1947, 1997; P. A. Steck et al., Nat. Genet., 15: 356-362, 1997]. Among tumors of the central nervous system, loss of 10q is not restricted to glioblastomas but is also common in atypical and anaplastic meningiomas. Therefore, we have investigated 36 glioblastomas and 34 meningiomas (2 benign, 17 atypical, and 15 anaplastic meningiomas) for loss on 10q, as well as deletion, mutation, and expression of PTEN. Analysis of eight microsatellites from 10q revealed loss of heterozygosity (LOH) in 25 of 36 glioblastomas (69%). Twenty-three of these tumors demonstrated LOH at all informative loci. Two glioblastomas showed LOH restricted to markers located distally to PTEN, with breakpoints mapping telomeric to D10S541 and D10S185. One glioblastoma demonstrated evidence of homozygous deletion of PTEN by differential PCR analysis. PTEN mutations were detected in 9 of 36 glioblastomas (25%). Seven of these tumors showed LOH at all informative loci from 10q, indicating complete loss of wild-type PTEN. Although loss of 10q was detected by comparative genomic hybridization and/or LOH analysis in 14 of the 34 meningiomas investigated (41%), none of these tumors showed evidence of PTEN mutations or homozygous gene deletions. Our findings corroborate that PTEN is inactivated in a subset of glioblastomas. However, the lack of detectable PTEN alterations in a considerable fraction of glioblastomas and all meningiomas with 10q loss strongly supports the hypothesis that at least one additional tumor suppressor gene is located on 10q.

Download full-text PDF

Source

Publication Analysis

Top Keywords

tumor suppressor
12
suppressor gene
12
glioblastomas meningiomas
12
loss 10q
12
glioblastomas
9
pten
9
pten mmac1
8
subset glioblastomas
8
meningiomas loss
8
10q
8

Similar Publications

Introduction: Recurrent uveitis (RU), an autoimmune disease, is a leading cause of ocular detriment in humans and horses. Equine and human RU share many similarities including spontaneous disease and aberrant cytokine signaling. Reduced levels of SOCS1, a critical regulator of cytokine signaling, is associated with several autoimmune diseases.

View Article and Find Full Text PDF

Exosomal microRNAs (exomiRs) play a critical role in intercellular communication, especially in cancer, where they regulate key cellular processes like proliferation, angiogenesis, and metastasis, highlighting their significance as potential diagnostic and therapeutic targets. Here, we aimed to characterize the role of exomiRs, derived from seven cancer types (four cell lines and three tumors), in influencing the pre-metastatic niche (PMN). In each cancer type we extracted high confidence exomiRs (LogFC >= 2 in exosomes relative to control), their experimentally validated targets, and the enriched pathways among those targets.

View Article and Find Full Text PDF

Background: Circular RNAs play an important role in regulating lung adenocarcinoma (LUAD). Bioinformatics analysis identified circ_0015278 as differentially expressed in LUAD. However, the biological mechanism of circ_0015278 in LUAD has not been fully clarified, especially in ferroptosis.

View Article and Find Full Text PDF

Background: PLK3, which played an important role in cell cycle progression and stress response, was identified as highly expressed in various carcinomas. However, the functions, molecular characteristics, and prognostic value of PLK3 in glioma remained unexplored.

Methods: We analyzed PLK3 expression in glioma samples from multiple databases.

View Article and Find Full Text PDF

Objectives: Melanoma is a highly aggressive and metastatic form of cancer, and the role of exosomal microRNAs (miRNAs) in its progression remains largely unexplored. This study aimed to investigate the effects of melanoma cell-derived exosomal miR-424-5p on angiogenesis and its underlying mechanisms.

Methods: Exosomes were isolated from melanoma cell lines A375 and A2058, and their effects on the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!