Cell surface glycoproteins undergo postbiosynthetic modification of their N-glycans by stepwise demannosylation.

J Biol Chem

Institut für Klinische Chemie und Biochemie, Virchow-Klinikum, Humboldt-Universität zu Berlin, D-13353 Berlin, Germany.

Published: January 1998

Primary rat hepatocytes and two hepatoma cell lines have been used to study whether high mannose-type N-glycans of plasma membrane glycoproteins may be modified by the removal of mannose residues even after transport to the cell surface. To examine glycan remodeling of cell surface glycoproteins, high mannose-type glycoforms were generated by adding the reversible mannosidase I inhibitor deoxymannojirimycin during metabolic labeling with [3H]mannose, thereby preventing further processing of high mannose-type N-glycans to complex structures. Upon transport to the cell surface, glycoproteins were additionally labeled with sulfosuccinimidyl-2-(biotinamido)ethyl-1,3-dithiopropionate. This strategy allowed us to follow selectively the fate of cell surface glycoproteins. Postbiosynthetic demannosylation was monitored by determining the conversion of Man8-9GlcNAc2 to smaller structures during reculture of cells in the absence of deoxymannojirimycin. The results show that high mannose-type N-glycans of selected cell surface glycoproteins are trimmed from Man8-9GlcNAc2 to Man5GlcNAc2 with Man7GlcNAc2 and Man6GlcNAc2 formed as intermediates. It could be clearly shown in MH 7777 as well as in HepG2 cells that demannosylation affects plasma membrane glycoproteins after they are routed to the cell surface. As was determined for total cell surface glycoproteins in HepG2 cells, this process occurs with a half-time of 6.7 h. By analyzing the size of high mannose-type glycans of glycoproteins isolated from the cell surface at the end of the reculture period, i.e. after trimming had occurred, we were able to demonstrate that glycoproteins carrying trimmed high mannose glycans become exposed at the cell surface. From these data we conclude that cell surface glycoproteins can be trimmed by mannosidases at sites peripheral to N-acetylglucosaminyltransferase I without further processing of their glycans to the complex form. This glycan remodeling may occur at the cell surface or during endocytosis and recycling back to the cell surface.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.273.2.1075DOI Listing

Publication Analysis

Top Keywords

cell surface
52
surface glycoproteins
28
high mannose-type
20
cell
14
mannose-type n-glycans
12
surface
12
glycoproteins
11
plasma membrane
8
membrane glycoproteins
8
transport cell
8

Similar Publications

Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.

View Article and Find Full Text PDF

Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an αβ heterotetramer that evolved from a homodimeric ancestor after a gene duplication.

View Article and Find Full Text PDF

Background: Three dimensional (3D) cell cultures can be effectively used for drug discovery and development but there are still challenges in their general application to high-throughput screening. In this study, we developed a novel high-throughput chemotherapeutic 3D drug screening system for gastric cancer, named 'Cure-GA', to discover clinically applicable anticancer drugs and predict therapeutic responses.

Methods: Primary cancer cells were isolated from 143 fresh surgical specimens by enzymatic treatment.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) is a prevalent and highly lethal malignancy in Asia. Recent advancements in immune checkpoint inhibitors (ICIs) have markedly transformed the systemic therapy landscape for ESCC. Anti-PD-1-based combination with chemotherapy or with ipilimumab, an anti-CTLA-4 antibody, have been established as the new standard first-line treatments for patients with advanced ESCC.

View Article and Find Full Text PDF

Electrolyte engineering has emerged as an effective strategy for stabilizing Zn-metal anodes. However, a single solute or solvent additive is far from sufficient to meet the requirements for electrolyte cycling stability. Here, we report a new-type high-entropy electrolyte composed of equal molar amounts of Zn(OTf)2 and LiOTf, along with equal volumes of H2O, triethyl phosphate, and dimethyl sulfoxide, which enhances electrolyte stability by increasing solvation entropy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!