The cerebral cortex of Alzheimer's and Down syndrome patients is characterized by the presence of protein deposits in neurofibrillary tangles, neuritic plaques, and neuropil threads. These structures were shown to contain forms of beta amyloid precursor protein and ubiquitin-B that are aberrant (+1 proteins) in the carboxyl terminus. The +1 proteins were not found in young control patients, whereas the presence of ubiquitin-B+1 in elderly control patients may indicate early stages of neurodegeneration. The two species of +1 proteins displayed cellular colocalization, suggesting a common origin, operating at the transcriptional level or by posttranscriptional editing of RNA. This type of transcript mutation is likely an important factor in the widely occurring nonfamilial early- and late-onset forms of Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.279.5348.242DOI Listing

Publication Analysis

Top Keywords

beta amyloid
8
amyloid precursor
8
precursor protein
8
protein ubiquitin-b
8
control patients
8
frameshift mutants
4
mutants beta
4
ubiquitin-b alzheimer's
4
patients
4
alzheimer's patients
4

Similar Publications

TREM2 is a signaling receptor expressed on microglia that has emerged as an important drug target for Alzheimer's disease and other neurodegenerative diseases. While a number of TREM2 ligands have been identified, little is known regarding the structural details of how they engage. To better understand this, we created a protein library of 28 different TREM2 variants that could be used to map interactions with various ligands using biolayer interferometry.

View Article and Find Full Text PDF

The precuneus is a site of early amyloid-beta (Aβ) accumulation. Previous cross-sectional studies reported increased precuneus fMRI activity in older adults with mild cognitive deficits or elevated Aβ. However, longitudinal studies in early Alzheimer's disease (AD) are lacking and the relationship to the Apolipoprotein-E () genotype is unclear.

View Article and Find Full Text PDF

Betaamyloid protein regulates miR15a and activates Bag5 to influence neuronal apoptosis in Alzheimers disease.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

July 2024

Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: The prevalence of Alzheimer's disease (AD) is increasing globally, however its pathogenesis is still unclear. The evidence showed that the progression of AD was closely related to the apoptosis of nerve cells. This study amis to explore the role and specific mechanism of miR-15a and Bag5 in the apoptosis of nerve cells induced by beta-amyloid protein (Aβ) in AD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) stands as one of the most prevalent neurodegenerative disorders, characterized by a progressive decline in cognitive function, neuroinflammation, amyloid-beta (Aβ) plaques, and neurofibrillary tangles (NFTs). With the global aging population, the incidence of AD continues to rise, yet current therapeutic strategies remain limited in their ability to significantly alleviate cognitive impairments. Therefore, a deeper understanding of the molecular mechanisms underlying AD is imperative for the development of more effective treatments.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs) are debilitating disorders characterized by the progressive and selective loss of function or structure in the brain and spinal cord. Both chronic and acute forms of these diseases are associated with significant morbidity and mortality, as they involve the degeneration of neurons in various brain regions. Misfolding and aggregation of amyloid proteins into oligomer and β-sheet rich fibrils share as common hallmark and lead to neurotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!