Fresh and cryopreserved autologous or allogeneic mononuclear blood cells (MBCs) intravenously injected in 1200 R total-body x-irradiated dogs repopulated lymph nodes within 10 days after tranfusion. Several parameters of the lymphopoietic regeneration were correlated with the number of cells transfused and with the number of colony-forming units contained in the cell suspension when they were cultured in agar (CFUc). Values within the normal or close to normal range were reached in the mesenteric nodes of most of the animals transfused with 10 X 10(9) MBC or more. These values were obtained when 5 X 10(5) CFUc or more were transfused. Axillary nodes showed lower values than mesenteric nodes. They were mostly under the normal range but well over those of the irradiated controls. Frozen and thawed MBCs seem to be as effective as fresh cells for lymphopoietic restoration. The mesenteric nodes of dogs transfused with allogeneic MBCs showed higher cellularity and larger cortical-paracortical areas than those of dogs tranfused with approximately the same number of autologous cells. The repopulation of lymph nodes parallels that of the marrow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2032449PMC

Publication Analysis

Top Keywords

lymph nodes
12
mesenteric nodes
12
repopulation lymph
8
nodes dogs
8
mononuclear blood
8
normal range
8
nodes
7
dogs
4
dogs 1200
4
1200 whole-body
4

Similar Publications

Disseminated protothecosis in a dog coinfected with Hepatozoon canis and Ehrlichia canis.

Vet Res Commun

January 2025

Facultad de Ciencias Veterinarias. Cátedra de Enfermedades Infecciosas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.

Protothecosis is a severe, emerging opportunistic infection caused by the saprophytic, achlorophyllous microalgae of the genus Prototheca. Though uncommon, human and animal cases are increasing worldwide, making awareness of this fungal-like pathogen important in both human and veterinary medicine. We report a fatal case of disseminated protothecosis caused by P.

View Article and Find Full Text PDF

Immunological interventions, like vaccinations, are enabled by the predictive control of humoral responses to novel antigens. While the development trajectories for many broadly neutralizing antibodies (bnAbs) have been measured, it is less established how human subtype-specific antibodies develop from their precursors. In this work, we evaluated the retrospective development trajectories for eight anti-SARS-CoV-2 Spike human antibodies (Abs).

View Article and Find Full Text PDF

Deuterium (H) MRI is an emerging tool for noninvasive imaging. We explore the integration of H MRI with deuterated multifunctional nanopolymers for deuterated particle imaging (DPI). To this end, amine-terminated G5-polyamidoamine (PAMAM) dendrimers were labeled with deuterated acetyl surface groups, leading to highly H-loaded bioparticles, making them ideal for imaging studies.

View Article and Find Full Text PDF

Aim: Lymphovascular invasion (LVI) is a well-known risk factor in colorectal cancer that is associated with a worse prognosis. The present study aimed to assess the characteristics of patients with LVI-positive colon cancer according to the status of nodal metastases and to study the association between LVI-nodal status and survival.

Method: This retrospective study assessed the association between LVI and lymph node metastases in colon cancer, using data from the National Cancer Database.

View Article and Find Full Text PDF

Objectives: We aimed to compare the outcomes of patients with T1-T2N0M0 glottic squamous cell carcinoma who underwent either partial laryngectomy (PL) or radiotherapy (RT).

Methods: A retrospective analysis of 562 patients treated with RT (n = 151) or PL (n = 411) was conducted. The Kaplan-Meier method was used to estimate outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!