The cardiac infiltrate seen in murine Lyme carditis is composed predominantly of macrophages, but small numbers of T cells are also present. To identify the cytokines present in cardiac lesions from susceptible mice, semiquantitative polymerase chain reaction was done on cardiac tissue from mice infected with Borrelia burgdorferi. The temporal expression of proinflammatory and T cell-derived cytokines was characterized in cardiac tissue at days 0, 3, 7, 14, 21, and 42 after infection with B. burgdorferi. Early in the course of infection, up-regulation of the proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha was detected. The Th1 cytokine interferon-gamma appeared after the expression of the proinflammatory cytokines and remained elevated throughout the study. Interleukin-4 was not detectable at any time in cardiac lesions. These data are the first to identify cytokines expressed at the lesional level in murine Lyme carditis and to demonstrate a Th1 pattern of cytokine expression in this lesion.

Download full-text PDF

Source
http://dx.doi.org/10.1086/517364DOI Listing

Publication Analysis

Top Keywords

murine lyme
12
lyme carditis
12
expression proinflammatory
12
proinflammatory cytokines
12
th1 cytokine
8
cytokine expression
8
identify cytokines
8
cardiac lesions
8
cardiac tissue
8
cytokines
7

Similar Publications

CCL17 influences Borrelia burgdorferi infection in the heart.

J Infect Dis

January 2025

Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06510, USA.

Lyme disease, caused by Borrelia burgdorferi, is transmitted to humans by Ixodes ticks. CCL17 is a potent chemokine that plays important roles in diverse illnesses, including autoimmune and infectious diseases. CCL17 knockout (KO) mice, infected with B.

View Article and Find Full Text PDF

Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.

View Article and Find Full Text PDF

A previous laboratory study using Haemaphysalis longicornis Neumann (Acari: Ixodidae) ticks of North American origin showed that larvae could acquire the Lyme disease spirochete, Borrelia burgdorferi sensu stricto (s.s.) (Spirochaetales: Spirochaetaceae) while feeding to completion on infected mice.

View Article and Find Full Text PDF

, the Lyme disease pathogen, continuously changes its gene expression profile in order to adapt to ticks and mammalian hosts. The alternative sigma factor RpoS plays a central role in borrelial host adaptation. Global transcriptome analyses suggested that more than 100 genes might be regulated by RpoS, but the main part of the regulon remains unexplored.

View Article and Find Full Text PDF

In this study, molecular analysis was used to show the possibility of transovarial and transstadial transmission of Borrelia valaisiana in Ixodes ricinus ticks in the natural biotopes of North-Western Russia. Female ticks collected in nature were fed on rabbits; larvae obtained from these females were fed on white mice. Eggs, female ticks after the egg deposition, larvae and nymphs of ticks after overwintering were studied for Borrelia burgdorferi s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!