Transplantation of CG4 oligodendrocyte progenitor cells in the myelin-deficient rat brain results in myelination of axons and enhanced oligodendroglial markers.

J Neurosci Res

Department of Neurobiology, Mental Retardation Research Center, Neuropsychiatric Institute, UCLA School of Medicine, Los Angeles, California 90024, USA.

Published: December 1997

Transplantation of oligodendrocyte (Ol) progenitor cells into the central nervous system is a promising approach for the treatment of myelin disorders. This approach requires providing adequate numbers of healthy cells with myelinating potential. We recently showed the successful transplantation of Ol progenitors into the myelin-deficient (md) rat brain. In the present work, CG4 cells, a cell line with properties of Ol progenitors, were labeled with fast blue and grafted into P3-P5 pups born to carrier mothers. Examination of host brains 2 weeks posttransplant indicated that CG4 cells display a much more extensive migration capacity than their wild-type counterparts. These cells synthesized myelin components. In addition, ultrastructural analysis showed myelin formation along axons of md hosts in various brain regions, including corpus callosum, cerebellum, and brainstem. Furthermore, in situ hybridization studies performed on sagittal sections revealed extensive expression of transferrin-mRNA within the md host parenchyma. The high survival and functional features displayed by CG4 cells after transplantation, together with their striking wide distribution within the host parenchyma, as assessed by the presence of myelinated fibers in mutant hosts, emphasizes the importance of using highly motile and proliferative Ol progenitor cells. Strategies to improve the condition and life span of md rat pups are currently under investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1097-4547(19971201)50:5<872::AID-JNR23>3.0.CO;2-1DOI Listing

Publication Analysis

Top Keywords

progenitor cells
12
cg4 cells
12
oligodendrocyte progenitor
8
cells
8
myelin-deficient rat
8
rat brain
8
host parenchyma
8
transplantation
4
transplantation cg4
4
cg4 oligodendrocyte
4

Similar Publications

Zebrafish ETS transcription factor Fli1b functions upstream of Scl/Tal1 during embryonic hematopoiesis.

Biol Open

March 2025

Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA.

During embryonic development vascular endothelial and hematopoietic cells are thought to originate from a common precursor, the hemangioblast. An evolutionarily conserved ETS transcription factor FLI1 has been previously implicated in the hemangioblast formation and hematopoietic and vascular development. However, its role in regulating hemangioblast transition into hematovascular lineages is still incompletely understood.

View Article and Find Full Text PDF

Orchestrated changes in cell arrangements and cell-to-cell contacts are susceptible to cellular stressors during central nervous system development. Effects of mitochondrial complex I inhibition on cell-to-cell contacts have been studied in vascular and intestinal structures; however, its effects on developing neuronal cells are largely unknown. We investigated the effects of the classical mitochondrial stressor and complex I inhibitor, rotenone, on the architecture of neural rosettes-radially organized neuronal progenitor cells (NPCs)-differentiated from human-induced pluripotent stem cells.

View Article and Find Full Text PDF

Harnessing intelligence from brain cells in vitro requires a multidisciplinary approach integrating wetware, hardware, and software. Wetware comprises the in vitro brain cells themselves, where differentiation from induced pluripotent stem cells offers ethical scalability; hardware typically involves a life support system and a setup to record the activity from and deliver stimulation to the brain cells; and software is required to control the hardware and process the signals coming from and going to the brain cells. This review provides a broad summary of the foundational technologies underpinning these components, along with outlining the importance of technology integration.

View Article and Find Full Text PDF

Implementation of a novel hybrid cord blood banking model within a private-public-partnership.

Transfusion

March 2025

Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Bern, Switzerland.

Background: Umbilical cord blood (UCB) stem cells can be collected at birth, cryopreserved, and used for transplantation in hematopoietic diseases. Typically, these stem cells are stored in public banks for allogeneic use or in private depositories for potential future utilization by the family. A proposed third option, hybrid cord blood banking, combines elements of both public and private storage.

View Article and Find Full Text PDF

Enforcement of stem-cell dormancy by nucleophosmin mutation is a critical determinant of unrestricted self-renewal during myeloid leukemogenesis.

Haematologica

March 2025

Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Milan.

Mutations in the NPM1 gene (NPMc+) and in the FLT3 gene (FLT3-ITD) represent the most frequent co-occurring mutations in Acute Myeloid Leukemia (AML), yet the cellular and molecular mechanisms of their cooperation remain largely unexplored. Using mouse models that faithfully recapitulate human AML, we investigated the impact of these oncogenes on pre-leukemic and leukemic hematopoietic stem cells (HSCs), both separately and in combination. While both NPMc+ and Flt3-ITD promote the proliferation of pre-leukemia HSCs, only NPMc+ drives extended selfrenewal by preventing the depletion of the quiescent HSC pool.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!