Nab proteins constitute an evolutionarily conserved family of corepressors that specifically interact with and repress transcription mediated by three members of the NGFI-A (Egr-1, Krox24, zif/268) family of immediate-early gene transcription factors, which includes NGFI-C, Krox20, and Egr3. We explored the mechanism of Nab1 repression and identified structural domains required for Nab1 function. Nab1 does not act by blocking DNA binding or nuclear localization of NGFI-A. In fact, Nab1 repression is not unique to NGFI-A because multiple types of non-NGFI-A activation domains were repressed, as was a heterologous transcription factor carrying the NGFI-A R1 domain, which is required for Nab1 interaction. Additionally, Nab1 tethered directly to DNA repressed constitutively active promoters. Tethered repression was not dependent on the identity of the basal promoter elements, the presence of a distal enhancer, or the distance separating the binding sites from the promoter. These results suggest that Nab1 repression is not specific to particular activators and that Nab1 is an active repressor that works by a direct mechanism. We identified a bipartite-like nuclear localization sequence and localized the repression function to the Nab conserved domain 2 (NCD2), a region found in the carboxy-terminal half of all Nab proteins. Three small regions of homology between Nab1 and previously characterized corepressors, Dr1 and E1b 55-kDa protein, were identified within NCD2. Replacement mutagenesis of residues conserved between these proteins interfered with Nab1 repression, although Nab1 does not function by the same mechanism as Dr1. The human NAB1 genomic locus was mapped to chromosome 2q32.3-33.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC115883PMC
http://dx.doi.org/10.1128/MCB.18.1.512DOI Listing

Publication Analysis

Top Keywords

nab1 repression
16
nab1
13
ngfi-a egr-1
8
nab proteins
8
required nab1
8
nab1 function
8
nuclear localization
8
repression
7
ngfi-a
5
nab1 corepressor
4

Similar Publications

Background & Aims: Non-alcoholic fatty liver disease (NAFLD) contributes to the global epidemic of metabolic syndrome and is considered a prelude to end-stage liver diseases such as cirrhosis and hepatocellular carcinoma. During NAFLD pathogenesis, hepatic parenchymal cells (hepatocytes) undergo both morphological and functional changes owing to a rewired transcriptome. The underlying mechanism is not entirely clear.

View Article and Find Full Text PDF

A gene regulatory network for antenna size control in carbon dioxide-deprived Chlamydomonas reinhardtii cells.

Plant Cell

May 2021

Algae Biotechnology and Bioenergy, Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universit�tsstrasse 27, 33615, Bielefeld, Germany.

In green microalgae, prolonged exposure to inorganic carbon depletion requires long-term acclimation responses, involving modulated gene expression and the adjustment of photosynthetic activity to the prevailing supply of carbon dioxide. Here, we describe a microalgal regulatory cycle that adjusts the light-harvesting capacity at photosystem II (PSII) to the prevailing supply of carbon dioxide in Chlamydomonas (Chlamydomonas reinhardtii). It engages low carbon dioxide response factor (LCRF), a member of the squamosa promoter-binding protein (SBP) family of transcription factors, and the previously characterized cytosolic translation repressor nucleic acid-binding protein 1 (NAB1).

View Article and Find Full Text PDF

One of the major factors limiting biomass productivity in algae is the low thermodynamic efficiency of photosynthesis. The greatest thermodynamic inefficiencies in photosynthesis occur during the conversion of light into chemical energy. At full sunlight the light-harvesting antenna captures photons at a rate nearly 10 times faster than the rate-limiting step in photosynthetic electron transport.

View Article and Find Full Text PDF

A Light Switch Based on Protein S-Nitrosylation Fine-Tunes Photosynthetic Light Harvesting in Chlamydomonas.

Plant Physiol

June 2016

Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), 33615 Bielefeld, Germany (H.B., L.W., O.K.); andSorbonne Universités, UPMC University of Paris 6, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France (M.D.M., S.M., C.H.M., S.D.L.)

Article Synopsis
  • Photosynthetic eukaryotes, like Chlamydomonas reinhardtii, must adjust their light-harvesting proteins (LHCII) based on changing light conditions to optimize photosynthesis.
  • A protein called NAB1 inhibits the translation of certain LHCII mRNAs, and its activity is regulated through a process called nitrosylation, which affects how these proteins are synthesized.
  • Under low light, a less active form of NAB1 promotes LHCII accumulation, while higher light levels activate NAB1 through denitrosylation, reducing LHCII synthesis to manage the stress on the photosystem II.
View Article and Find Full Text PDF

Activating transcription factor 3-mediated chemo-intervention with cancer chemokines in a noncanonical pathway under endoplasmic reticulum stress.

J Biol Chem

September 2014

Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan 626-870, Korea,; Research Institute for Basic Sciences and Medical Research Institute, Pusan National University, Busan 609-735, Korea,; Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Busan 609-735, South Korea. Electronic address:

The cell-protective features of the endoplasmic reticulum (ER) stress response are chronically activated in vigorously growing malignant tumor cells, which provide cellular growth advantages over the adverse microenvironment including chemotherapy. As an intervention with ER stress responses in the intestinal cancer cells, preventive exposure to flavone apigenin potentiated superinduction of a regulatory transcription factor, activating transcription factor 3 (ATF3), which is also known to be an integral player coordinating ER stress response-related gene expression. ATF3 superinduction was due to increased turnover of ATF3 transcript via stabilization with HuR protein in the cancer cells under ER stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!