The nerve growth factor receptor, TrkA, has a critical role in the survival, differentiation, and function of neurons in the peripheral and central nervous systems. Recent studies have demonstrated a strong correlation between abundant expression of TrkA and a favorable prognosis of the pediatric tumor, neuroblastoma. This correlation suggests that TrkA may actively promote growth arrest and differentiation of neuroblastoma tumor cells and may be an important therapeutic target in the treatment of this disease. In the present study, we have examined the mechanistic basis for TrkA gene expression in human neuroblastoma cells. Northern blotting and nuclear run-on analyses demonstrated that transcription is a primary determinant of both cell-specific and variable expression of the TrkA gene in neuroblastoma cell lines that express it to different degrees. Cell-specific and variable transcription in neuroblastoma cells was recapitulated by transient transfection of TrkA promoter-luciferase reporter constructs, and regulatory sequences mediating these processes were localized to a 138-base pair region lying just upstream of the transcription initiation region. This neuroblastoma regulatory region formed multiple DNA-protein complexes in gel shift assays that were highly enriched in neuroblastoma cells exhibiting abundant TrkA expression. Thus, TrkA-positive neuroblastoma cells are distinguished by differential expression of putative transcription factors that ultimately may serve as targets for up-regulating TrkA expression in tumors with poor prognosis.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.273.1.39DOI Listing

Publication Analysis

Top Keywords

neuroblastoma cells
20
trka
9
neuroblastoma
9
favorable prognosis
8
human neuroblastoma
8
expression trka
8
trka gene
8
cell-specific variable
8
trka expression
8
expression
7

Similar Publications

Senescence, a crucial yet paradoxical phenomenon in cellular biology, acts as a barrier against cancer progression while simultaneously promoting aging and age-related pathologies. This duality underlines the importance of precise monitoring of senescence response, especially with regard to the proposed use of drugs selectively removing senescent cells. In particular, little is known about the role of senescence in neurons and in neurodegenerative diseases.

View Article and Find Full Text PDF

Donor-derived GD2-specific CAR T cells in relapsed or refractory neuroblastoma.

Nat Med

January 2025

Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy.

Allogeneic chimeric antigen receptor (CAR) T cells targeting disialoganglioside-GD2 (ALLO_GD2-CART01) could be a therapeutic option for patients with relapsed or refractory, high-risk neuroblastoma (r/r HR-NB) whose tumors did not respond to autologous GD2-CART01 or who have profound lymphopenia. We present a case series of five children with HR-NB refractory to more than three different lines of therapy who received ALLO_GD2-CART01 in a hospital exemption setting. Four of them had previously received allogeneic hematopoietic stem cell transplantation.

View Article and Find Full Text PDF

FOXJ3, a novel tumor suppressor in neuroblastoma.

Mol Ther Oncol

March 2025

School of Interdisciplinary Informatics, University of Nebraska Omaha, 1110 South 67th Street, Omaha, NE 68182, USA.

Neuroblastoma (NB) poses a significant challenge in pediatric cancer care due to its aggressive nature and poor prognosis. While advances have been made in clinical treatments, therapy resistance remains a tough hurdle in NB treatment. While much research has focused on identifying oncogenes in NB, there has been less emphasis on understanding tumor suppressors.

View Article and Find Full Text PDF

Transgenic mice and organoid models, such as three-dimensional tumoroid cultures, have emerged as powerful tools for investigating cancer development and targeted therapies. Yet, the extent to which these preclinical models recapitulate the cellular identity of heterogeneous malignancies, like neuroblastoma (NB), remains to be validated. Here, we characterized the transcriptional landscape of TH-MYCN tumors by single-cell RNA sequencing (scRNA-seq) and developed ex vivo tumoroids.

View Article and Find Full Text PDF

The study explored the pathological mechanism of doxorubicin chemotherapy-induced neurotoxicity and the intervention methods of traditional Chinese medicine. BALB/c mice were selected to establish tumor-bearing mouse models by orthotopic injection of 4T1 triple-negative breast cancer cells. After randomization, the mice were treated with doxorubicin chemotherapy or doxorubicin chemotherapy + Kaixin San(KXS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!