Objectives: To determine the effects of tubular resorbable polymer membranes on the healing of a segmental diaphyseal bone defect.
Design: A randomized prospective study using the minipig model. Animals were evaluated with in vivo roentgenograms on a biweekly basis until explanted at twelve weeks.
Setting: After surgery, animals were allowed unrestricted activity and weight bearing between twenty-four and forty-eight hours.
Animals: Fifteen yearling Yucatan minipigs.
Intervention: A 2.5- to 3.0-centimeter mid-diaphyseal defect was created in the middle third of the radius. Animals were assigned in groups of three to receive the following implants: (a) poly(L/DL-lactide), (b) poly(L/DL-lactide)-CaCO3, (c) poly(D-lactide), (d) poly(D-lactide)-CaCO3, and (e) an untreated defect. No adjunctive internal or external fixation was used as the ulna was left intact.
Main Outcome Measures: The limbs were studied with in vivo anterior-posterior and lateral radiographs at biweekly intervals for the presence and pattern of bone formation. All limbs were explanted at twelve weeks postimplantation for methyl-methacrylate embedding and histologic and microradiographic study.
Results: The bone defects covered with membranes were completely reconstituted by six to eight weeks. Untreated defects healed with less bone formation and in a more disorganized pattern. Histologic evaluation of the implants demonstrated that the entire lumen of the implant was filled with bone, with some periosteal bone formation occurring on the outer surface of the membrane. There was direct apposition of bone onto the membrane surface or minimal fibrous tissue interposition between membrane and new bone. There was no foreign body or adverse reaction to the membrane. Untreated defects showed woven bone formation with clefts and irregularly shaped margins occupied by fibrous tissues or surrounding muscle tissues.
Conclusions: This study supports the concept that a membrane enhances bone defect healing by excluding nonosseous tissues from a defect and providing structural scaffolding for periosteal and endosteal bone regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00005131-199711000-00002 | DOI Listing |
Codas
January 2025
Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre - HCPA - Porto Alegre (RS), Brasil.
Purpose: to characterize mastication and electrical activation of the masseter and anterior temporalis muscles in children and adolescents with osteogenesis imperfecta (OI), and relate results to guided occlusion and occlusal interference.
Methods: This observational, analytical cross-sectional study included 22 subjects divided into mild OI (MOI) (type 1) (n=15) and moderate-to-severe OI (MSOI) (types 3, 4, and 5) (n=7) groups. The Orofacial Myofunctional Evaluation with Scores (OMES) form was used to evaluate the clinical aspects of mastication.
ACS Nano
January 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
Contemporary osteoporosis treatment often neglects the intricate interactions among immune cells, signaling proteins, and cytokines within the osteoporotic microenvironment. Here, we developed core-shell nanocapsules composed of a cationized lactoferrin core and an alendronate polymer shell. By tuning the size of these nanocapsules and leveraging the alendronate shell, we enabled precise delivery of small interfering RNA targeting the Semaphorin 4D gene (siSema4D) to specific bone sites.
View Article and Find Full Text PDFOdontology
January 2025
School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China.
The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted.
View Article and Find Full Text PDFJ Mol Histol
January 2025
Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Tumor necrosis factor-α (TNF-α) induces a multitude of actions and consequences in bone and cartilage resorption and immune response augmentation. In this research, we aimed to investigate the effects of TNF-α on osteogenesis parameters in newborn mice. Experimental research was conducted on 42 pregnant mice, dividing into seven groups as follows: control (no injection), vehicle 1 (PBS injection on 7-9th pregnancy days (PD)), vehicle 2 (PBS injection during pregnancy), experimental 1 (injection of 10 ng/kg of TNF-α on 7-9th PD), experimental 2 (injection of 100 ng/kg of TNF-α on 7-9th PD), experimental 3 (injection of 10 ng/kg of TNF-α during pregnancy) and experimental 4 (injection of 100 ng/kg of TNF-α during pregnancy).
View Article and Find Full Text PDFFASEB J
January 2025
Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!