Peroxovanadiums (pVs) are potent protein tyrosine phosphatase (PTP) inhibitors with insulin-mimetic properties in vivo and in vitro. We have established the existence of an insulin receptor kinase (IRK)-associated PTP whose inhibition by pVs correlates closely with IRK tyrosine phosphorylation, activation, and downstream signaling. pVs have also been shown to activate various tyrosine kinases (TKs) that could participate in activation of the insulin-signaling pathway. In the present study we have sought to determine whether pV-induced IRK tyrosine phosphorylation requires the intrinsic kinase activity of the IRK, and whether IRK activation is necessary to realize the early steps in the insulin-signaling cascade. To address this we evaluated the effect of a pure pV compound, bis peroxovanadium 1,10-phenanthroline [bpV(phen)], in HTC rat hepatoma cells overexpressing normal (HTC-IR) or kinase-deficient (HTC-M1030) mutant IRKs. We showed that at a dose of 0.1 mM, but not 1 mM, bpV(phen) induced IRK-dependent events. Thus, 0.1 mM bpV(phen) increased tyrosine phosphorylation and IRK activity in HTC-IR but not HTC-M1030 cells. Tyrosine phosphorylation of insulin signal-transducing molecules was promoted in HTC-IR but not HTC-M1030 cells by bpV(phen). The association of p185 and p60 with the src homology-2 (SH2) domains of Syp and the p85-regulatory subunit of phosphatidylinositol 3'-kinase was induced by bpV(phen) in HTC-IR, but not in HTC-M1030 cells, as was insulin receptor substrate-1-associated phosphatidylinositol 3'-kinase activity. Thus autophosphorylation and activation of the IRK by bpV(phen) is effected by the IRK itself, and the early events in the insulin- signaling cascade follow from this activation event. This establishes a critical role for PTP(s) in the regulation of IRK activity. bpV(phen) could be distinguished from insulin only in its ability to activate ERK1 in HTC-M1030 cells, thus indicating that this event is IRK independent, consistent with our previous hypothesis that bpV(phen) inhibits a PTP involved in the negative regulation of mitogen-activated protein kinases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/mend.11.13.0041 | DOI Listing |
Nat Chem Biol
January 2025
Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
RAF protein kinases are major RAS effectors that function by phosphorylating MEK. Although all three RAF isoforms share a conserved RAS binding domain and bind to GTP-loaded RAS, only ARAF uniquely enhances RAS activity. Here we uncovered the molecular basis of ARAF in regulating RAS activation.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro.
O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40).
View Article and Find Full Text PDFAnim Reprod
January 2025
Hebei Key Laboratory of Animal Diversity, College of Life Sciences, Langfang Normal University, Hebei Langfang, China.
More than 90% of spermatozoa of boars in pork producing countries is stored in liquid at 17 °C; however, the quality of these spermatozoa is affected by bacterial breeding and oxidative damage. This study analyzed sperm quality and sperm capacitation after storage to study the effects of the effects of ZnO nanoparticles (ZnO NPs) supplementation on seminal plasma (SP)-free sperm preservation. We investigated the effects of adding 20, 50, 100 and 200 μg/mL of ZnO NPs to a seminal free boar sperm diluent over a 7-day period at 17 °C to assess the changes in non-capacitated/capacitated sperm quality parameters, antioxidant capacity, ATP content and extent of protein tyrosine phosphorylation.
View Article and Find Full Text PDFCancer Manag Res
January 2025
Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Background: Signaling pathways centered on the G-protein ADP-ribosylation factor 6 (Arf6) and its downstream effector ArfGAP with the SH3 Domain, Ankyrin Repeat and PH Domain 1 (AMAP1) drive cancer invasion, metastasis, and therapy resistance. The Arf6-AMAP1 pathway has been reported to promote receptor recycling leading to programmed cell death-ligand 1 (PD-L1) overexpression in pancreatic ductal carcinoma. Moreover, AMAP1 regulates of nuclear factor-kappa B (NF-κB), which is an important molecule in inflammation and immune activation, including tumor immune interaction through PD-L1 regulation.
View Article and Find Full Text PDFOncogene
January 2025
Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.
The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!