Peroxidase activity (PA) was studied in the rat's brain cortex during a 2 months training to hypoxia according to the Barbashova method. PA was investigated histochemically by an ammonium--molibdate--benzidine method on blocks of surviving brain tissue, thereafter they were studied by the contact microscopy. PA was also determined biochemically in water-salt extracts of the brain tissue. A progressive increase of PA in the course of training was shown by both the techniques. The increase of activity is accounted for by the growing quantity of neurons developing the reaction as well as by the growing intensity of reaction in each neuron. The nature of PA of neurons and its adaptive significance in hypoxic conditions is discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

peroxidase activity
8
brain tissue
8
[the peroxidase
4
activity rat
4
rat cerebral
4
cerebral hemisphere
4
hemisphere neurons
4
neurons hypoxia
4
hypoxia training]
4
training] peroxidase
4

Similar Publications

Exposure to anthracene can cause skin and eye irritation, respiratory issues, and potential long-term health risks, including carcinogenic effects. It is also toxic to aquatic and human life and has the potential for long-term environmental contamination. This study aims to alleviate the adverse environmental effects of anthracene through fungal degradation, focusing on bioremediation approaches using bioinformatics.

View Article and Find Full Text PDF

CmTGA8-CmAPX1/CmGSTU25 regulatory model involved in trehalose induced cold tolerance in oriental melon seedlings.

Plant Physiol Biochem

December 2024

College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province, China; Northern National & Local Joint Engineering Research Center of Horticultural Facilities Design and Application Technology, Shenyang, Liaoning, 110866, China. Electronic address:

Plants have developed complex regulatory networks to adapt to various stresses, including cold stress. Trehalose (Tre), known as the "sugar of life," plays a crucial role in enhancing cold tolerance by triggering antioxidation. However, the underlying regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

Colorimetric detection of pathogenic bacteria (such as S. aureus) in complex sample confronts challenges regarding sensitivity, selectivity, and accuracy. In this paper, a magnetic field facilitated (MFF)-colorimetric aptasensor was proposed for S.

View Article and Find Full Text PDF

The GRAS transcription factor PtrPAT1 of functions in cold tolerance and modulates glycine betaine content by regulating the -like gene.

Hortic Res

January 2025

National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.

GRAS, termed after gibberellic acid insensitive (GAI), RGA (repressor of GA1), and SCR (scarecrow), is a plant-specific transcription factor crucial for plant development and stress response. However, understanding of the functions played by the GRAS members and their target genes in citrus is limited. In this study, we identified a cold stress-responsive GRAS gene from , designated as PtrPAT1, by yeast one-hybrid library screening using the promoter of , a betaine aldehyde dehydrogenase (BADH)-like gene.

View Article and Find Full Text PDF

Cotton is essential for the global textile industry however, climate change, especially extreme temperatures, threatens sustainable cotton production. This research aims to identify breeding strategies to improve heat tolerance and utilize stress-resistant traits in cotton cultivars. This study investigated heat tolerance for 50 cotton genotypes at the seedling stage by examining various traits at three temperatures (32 °C, 45 °C and 48 °C) in a randomized plot experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!