The role of ecdysteroids in modulating exoskeletal growth during the moult cycle of Crustacea has been well described. However, little is known about the action of ecdysteroids at the level of gene transcription and regulation in Crustacea. This paper reports the cloning of an ecdysteroid responsive gene, HHR3, a potential Manduca sexta MHR3 homologue in the American lobster, Homarus americanus. Levels of HHR3 expression are up-regulated in response to in vivo injections of premoult concentrations (10(-6) M) of 20-hydroxyecdysone in the epidermal and muscle tissue of the lobster after 6 h. Maximal mRNA levels are observed after 21 h before returning to basal levels. In muscle tissue, elevated levels of HHR3 mRNA follow a time course similar to elevated actin mRNA expression in response to hormonal injection. In contrast, in eyestalk tissue, the HHR3 levels decline up to 21 h post-injection before rising to basal levels after 48 h. Eyestalk, epidermal and leg muscle tissue was extracted over the moult cycle to determine the levels of expression. In muscle, HHR3 is high during the premoult period that corresponds to the period of the moult cycle when the ecdysteroid titre is high. In the epidermis, HHR3 levels are also high during the premoult with elevated levels maintained into the postmoult period. In the eyestalk, mRNA levels of HHR3 show an opposite pattern of expression with low levels during premoult and postmoult and high levels found during the intermoult period. Our results provide novel evidence for an ecdysteroid responsive gene in a crustacean that has many similarities to MHR3 in Manduca and DHR3 in Drosophila melanogaster. This raises the question of whether a similar cascade of ecdysteroid responsive genes exist in other members of Arthropoda such as the Crustacea, as has been demonstrated in Drosophila. In addition, we provide further evidence for negative feedback regulation of ecdysteroids at the site of moult-inhibiting hormone (MIH) production in the lobster eyestalk.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-1119(97)00437-xDOI Listing

Publication Analysis

Top Keywords

moult cycle
12
ecdysteroid responsive
12
levels
12
levels hhr3
12
muscle tissue
12
responsive gene
8
mrna levels
8
basal levels
8
elevated levels
8
hhr3 levels
8

Similar Publications

As an abiotic stress factor, salinity significantly affects the physiological activities of crustaceans. In this study, transcriptome sequencing was used to evaluate the mechanism of ion transport and the physiological response of black tiger shrimp (Penaeus monodon) under low salt stress. Four hundred post larval (PL) stage P.

View Article and Find Full Text PDF

The effect of thermal stress on the X-organ/sinus gland proteome of the estuarine blue crab Callinectes sapidus during the intermolt and premolt stages.

J Proteomics

January 2025

Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, USA.

Survival of brachyuran crabs is temperature-dependent and thermal stress promotes changes during molting. We aimed to decipher the impact of thermal stresses on the X-organ/sinus gland (XO/SG) complex, a temperature-sensitive neuroendocrine tissue involved in the molting regulation of Callinectes sapidus during the intermolt and premolt phases. We employed a proteogenomic approach using specimens subjected to control (24 °C), cold (19 °C), and heat (29 °C) temperatures.

View Article and Find Full Text PDF

Transgenic Cotton Expressing ds Significantly Delays the Growth and Development of by Inhibiting Its Glycolysis and TCA Cycle.

Int J Mol Sci

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.

In our previous research, we found that not only participates in the detoxification metabolism of neonicotinoid insecticides in cotton aphid but also affects their growth and development. However, how does transgenic cotton expressing ds affect the growth and development of cotton aphid? In this study, we combined transcriptome and metabolome to analyze how to inhibit the growth and development of cotton aphid treated with transgenic cotton expressing ds (TG cotton). The results suggested that a total of 509 differentially expressed genes (DEGs) were identified based on the DESeq method, and a total of 431 differential metabolites (DAMs) were discovered using UPLC-MS in the metabolic analysis.

View Article and Find Full Text PDF

The crustacean cuticle is a composite material acting as a shell, but also linked with other physiological functions as respiration, locomotion or reproduction. The present study aimed to characterize for the first time the cuticle properties of the marine prawn Palaemon serratus using thermal (TGA) and chemical (FTIR, ICP-AES) techniques. The use of native lyophilized cutiles also enabled to estimate the complexity of the cuticle structure of P.

View Article and Find Full Text PDF

Understanding the habitat use of individuals can facilitate methods to measure the degree to which populations will be affected by potential stressors. Such insights can be hard to garner for marine species that are inaccessible during phases of their annual cycles. Here, we quantify the link between foraging habitat and behaviour in an aquatic bird of high conservation concern, the red-throated diver () across three breeding populations (Finland, Iceland and Scotland) during their understudied moult period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!