The cross-species specificity of the cohesin-dockerin interaction, which defines the incorporation of the enzymatic subunits into the cellulosome complex, has been investigated. Cohesin-containing segments from the cellulosomes of two different species, Clostridium thermocellum and Clostridium cellulolyticum, were allowed to interact with cellulosomal (dockerin-containing) enzymes from each species. In both cases, the cohesin domain of one bacterium interacted with enzymes from its own cellulosome in a calcium-dependent manner, but the same cohesin failed to recognize enzymes from the other species. Thus, in the case of these two bacteria, the cohesin-dockerin interaction seems to be species-specific. Based on intra- and cross-species sequence comparisons among the different dockerins together with their known specificities, we tender a prediction as to the amino-acid residues critical to recognition of the cohesins. The suspected residues were narrowed down to only four, which comprise a repeated pair located within the calcium-binding motif of two duplicated sequences, characteristic of the dockerin domain. According to the proposed model, these four residues do not participate in the binding of calcium per se; instead, they appear to serve as recognition codes in promoting interaction with the cohesin surface.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cohesin-dockerin interaction
12
clostridium thermocellum
8
thermocellum clostridium
8
clostridium cellulolyticum
8
dockerin domain
8
enzymes species
8
species-specificity cohesin-dockerin
4
interaction
4
clostridium
4
interaction clostridium
4

Similar Publications

Single-molecule force spectroscopy (SMFS) is powerful for studying folding states and mechanical properties of proteins, however, it requires protein immobilization onto force-transducing probes such as cantilevers or microbeads. A common immobilization method relies on coupling lysine residues to carboxylated surfaces using 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS). Because proteins typically contain many lysine groups, this strategy results in a heterogeneous distribution of tether positions.

View Article and Find Full Text PDF

Current challenges in designer cellulosome engineering.

Appl Microbiol Biotechnol

May 2023

Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium.

Designer cellulosomes (DCs) are engineered multi-enzyme complexes, comprising carbohydrate-active enzymes attached to a common backbone, the scaffoldin, via high-affinity cohesin-dockerin interactions. The use of DCs in the degradation of renewable biomass polymers is a promising approach for biorefineries. Indeed, DCs have shown significant hydrolytic activities due to the enhanced enzyme-substrate proximity and inter-enzyme synergies, but technical hurdles in DC engineering have hindered further progress towards industrial application.

View Article and Find Full Text PDF

The increased efficiency of porphyran hydrolysis by constructing a multifunctional enzyme complex from marine microorganisms.

Enzyme Microb Technol

April 2023

Department of Next Generation Applied Sciences, Graduate School, Sungshin Women's University, Seoul 01133, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea. Electronic address:

Porphyran, a polysaccharide composed of red algae, is a source of a multifunctional oligosaccharide material and raw biomass with various physiological activities. The glycolysis of porphyrans into oligosaccharides through various porphyranases is an approach for obtaining high-quality and promising alternative resources. In this study, porphyran was extracted from Porphyra yezoensis and used as a research substrate.

View Article and Find Full Text PDF

Structure-function studies can improve binding affinity of cohesin-dockerin interactions for multi-protein assemblies.

Int J Biol Macromol

January 2023

CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal. Electronic address:

The cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity.

View Article and Find Full Text PDF

Enzymatic biofuel cells (EBFCs) provide a new strategy to enable direct biomass-to-electricity conversion, posing considerable demand on sequential enzymes. However, artificial blend of multi-enzyme systems often suffer biocatalytic inefficiency due to the rambling mixture of catalytic units. In an attempt to construct a high-performance starch/O EBFC, herein we prepared a starch-oxidizing bioanode based on displaying a sequential enzyme system of glucoamylase (GA) and glucose dehydrogenase (GDH) on E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!