The purpose of this study was to analyze partial nucleotide sequences and derived peptide sequences of hepatitis E virus (HEV) from two outbreaks of hepatitis E in Africa (Chad 1983-1984; Algeria 1978-1980). A portion of ORF3 and the major portion of ORF2 were amplified by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR). The PCR products were sequenced directly or after cloning into the pCRII vector. Sequences were then compared to the corresponding regions of reported full length HEV sequences. In the ORF2 and ORF3 regions, the homology between the Algerian and the Chad isolates at the nucleic acid level was 92 and 95%, respectively. At the peptide level the homology was 98% in both regions. In these regions, both strains are more related to Asian strains at the nucleic acid level (89 to 95%) and at the amino acid level (95 to 100%) than to the Mexico strain. At the peptide level the differences are less apparent. Both African isolates have amino acid changes in common with some reference strains although the Chad isolate has three unique changes. These African strains of HEV, based on the ORF2 and ORF3 phylogenetic trees, appear to be a distinct phylogenetic group, separate from the Mexican and Asian strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(sici)1096-9071(199712)53:4<340::aid-jmv5>3.0.co;2-7 | DOI Listing |
Curr Res Food Sci
January 2025
School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China.
The combination of polyphenols and protein can improve the functional characteristics of protein. How to effectively promote the binding of polyphenols to protein is still a difficult topic. In this study, hydrodynamic cavitation (HC) was used to induce the fabrication of complexes between soy protein isolate (SPI) and different polyphenols (tannic acid (TA), chlorogenic acid (CGA), ferulic acid (FA), caffeic acid (CA), and gallic acid (GA)).
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Hematology, Jining NO. 1 People's Hospital, Jining, 272000, People's Republic of China.
Purpose: Mitoxantrone (MTX) is largely restricted in clinical usage due to its significant cardiotoxicity. Multiple studies have shown that an imbalance in the gut-heart axis plays an important role in the development of cardiovascular disease (CVD). We aim to explore the possible correlations between gut microbiota (GM) compositions and cardiometabolic (CM) disorder in MTX-triggered cardiotoxicity mice.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
International Magnesium Institute, College of Resources and Environment Fujian Agriculture and Forestry University Fuzhou China.
Sweet corn ( L. ) is gaining global popularity as a staple crop and a vegetable due to its high nutritional value. However, information on grain magnesium (Mg) and calcium (Ca) status and their response to phosphorus (P) fertilization in sweet corn is still insufficient.
View Article and Find Full Text PDFWater Res X
May 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
Although the treatment of sludge with free nitrous acid can effectively recover short chain fatty acids, the feasibility of sequential nitrite reduction and methane recovery without acidic pH adjustment is still scarcely studied. Therefore, this study aimed to provide insights into the effect of nitrite at different levels on nitrite reduction and methane production. The results showed that the nitrite concentrations of 100, 200, 400 and 800 mg/L were completely reduced in 1, 2, 2 and 4 days, respectively.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Logic of Genomic Systems Laboratory (CNB-CSIC), Madrid E-28049, Spain.
While more data are becoming available on gene activity at different levels of biological organization, our understanding of the underlying biology remains incomplete. Here, we introduce a metabolic efficiency framework that considers highly expressed proteins (HEPs), their length, and biosynthetic costs in terms of the amino acids (AAs) they contain to address the observed balance of expression costs in cells, tissues, and cancer transformation. Notably, the combined set of HEPs in either cells or tissues shows an abundance of large and costly proteins, yet tissues compensate this with short HEPs comprised of economical AAs, indicating a stronger tendency toward mitigating costs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!