Holo and apoenzyme of aspartate aminotransferase from beef kidney are 80% inactivated by photoxidation in the presence of 2 X 10(-6) M tetraiodofluroescein with the modification of two histidine residues per enzyme protomer. At a higher concentration (1 X 10(-5) M) a tyrosine residue is also modified. The keto substrates, ketoglutarate and oxalacetate, protect the enzyme from photoxidation. Diethylpyrocarbonate modifies three histidine residues per enzyme protomer and reduces the activity only 10%. These results suggest that the two histidine residues photoxidized through the sensitizer, are located in the active site of the enzyme, at least one of these appears to be involved in ketosubstrate binding. The other three histidines modified by diethylpyrocarbonate are likely located on the enzyme surface and are not involved in the catalytic activity of the enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01744996 | DOI Listing |
Nat Commun
January 2025
Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
The mycobacterial ABC transporter IrtAB features an ABC exporter fold, yet it imports iron-charged siderophores called mycobactins. Here, we present extensive cryo-EM analyses and DEER measurements, revealing that IrtAB alternates between an inward-facing and an outward-occluded conformation, but does not sample an outward-facing conformation. When IrtAB is locked in its outward-occluded conformation in nanodiscs, mycobactin is bound in the middle of the lipid bilayer at a membrane-facing crevice opening at the heterodimeric interface.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
Insect melanization triggered by the conversion of prophenoloxidase to active phenoloxidase via serine proteases (SPs) is an important immediate immune response. However, how phytoplasmas evade this immune response to promote their propagation in insect vectors remains unknown. Here, we demonstrate that infection of leafhopper vectors with rice orange leaf phytoplasma (ROLP) activates the mild melanization response in hemolymph.
View Article and Find Full Text PDFBiopolymers
March 2025
Department of Chemistry, Bose Institute, Kolkata, India.
The stability of α-crystallin, the major protein of the mammalian eye lens and a molecular chaperone, is one of the most crucial factors for its survival and function. The chaperone-like activity and stability of α-crystallin dramatically increased in the presence of Zn. Each subunit of α-crystallin could bind multiple zinc atoms through inter-subunit bridging and cause enhanced stability.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
The Ni-N(His) coordination bond, formed between the nickel ion and histidine residues, is essential for recombinant protein purification, especially in Ni-NTA-based systems for selectively binding polyhistidine-tagged (Histag) proteins. While previous studies have explored its bond strength in a synthetic Ni-NTA-Histag system, the influence of the surrounding protein structure remains less understood. In this study, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to quantify the Ni-N(His) bond strength in calprotectin, a biologically relevant protein system.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!