The risks associated with environmental exposures to inorganic mercury are typically assessed based on toxicity studies conducted with the soluble salt, mercuric chloride (HgCl2). Evidence indicates, however, that inorganic mercury is present in soil as a variety of compounds and that oral absorption of inorganic mercury decreases with a decrease in the solubility of the mercury compound being studied. Thus, while HgCl2 is approximately 15-20% bioavailable, the bioavailability of cinnabar (HgS) may be 30- to 60-fold less. The solubility and, hence, bioavailability of inorganic mercury in soil is expected to be substantially less than that of HgCl2 due to the presence of less soluble compounds and their interactions with soil constituents. Quantification of this difference in bioavailability is important in assessing potential risks associated with exposure to mercury-containing soil. A review of available studies supports the expectation that mercury bioavailability in soils will be reduced. This paper reviews methods for assessing soil metal absorption with consideration of the characteristics of the oral absorption of elemental and inorganic mercury that should be evaluated in designing additional studies. Because of the very slow elimination of mercury in some species, it is recommended that a repeated-dose study be conducted. Such a study would yield an estimate of relative bioavailability based on a comparison of tissue mercury concentrations in animals ingesting soil with those of animals receiving HgCl2. The dose, age, gender, and species of animal selected are not expected to affect relative bioavailability estimates; however, it is recommended that studies be conducted in two animal species. Rats should be used because they have been used in many studies of mercury absorption and toxicity. A species of large animals such as monkeys, swine, or dogs should also be used to provide confirmation in a species with greater similarities to humans in gastrointestinal physiology and anatomy. Other critical factors in designing these studies, such as selection and characterization of soil samples, are also addressed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1539-6924.1997.tb00896.x | DOI Listing |
Curr Med Chem
January 2025
Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
Mercury is a pervasive global pollutant, with primary anthropogenic sources including mining, industrial processes, and mercury-containing products such as dental amalgams. These sources release mercury into the environment, where it accumulates in ecosystems and enters the food chain, notably through bioamplification in marine life, posing a risk to human health. Dental amalgams, widely used for over a century, serve as a significant endogenous source of inorganic mercury.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Construction Engineering, University of Córdoba, E.P.S of Belmez, Avenida de la Universidad s/n, E-14240 Córdoba, Spain.
The findings highlight the potential for broadening the use of shell aggregates in construction applications. This research investigated the viability of incorporating milled seashells as fine sand replacements for natural calcareous sand in the production of self-compacting mortar. These results highlight a promising avenue for coastal industries to reduce waste while enhancing the durability of construction materials.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Rapid screening of inorganic arsenic (iAs) in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection. Most commercial field test kits are based on the Gutzeit reaction that uses mercury-based reagents for color development, an environmental concern that increasingly limits its utilization. This study further improves the Molybdenum Blue (MB) colorimetric method to allow for faster screening with more stable reagents.
View Article and Find Full Text PDFSci Rep
January 2025
Nanning Center for Disease Control and Prevention, Nanning, 530021, Guangxi, China.
Nowadays rice has become one of the world's staple foods. Rice in southern China is also a staple food for everyone, however, with the development of China's industrialization model, many industrial areas may be contaminated by heavy metals, leading to contamination of the agricultural areas. With the development of recent years, Nanning has become a heavily industrial development area, and rice is also a favourite staple food.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
The neurotoxin methylmercury (MeHg) is produced mainly from the transformation of inorganic Hg by microorganisms carrying the gene pair. Paddy soils are known to harbor diverse microbial communities exhibiting varying abilities in methylating inorganic Hg, but their distribution and environmental drivers remain unknown at a large spatial scale. Using gene amplicon sequencing, this study examined Hg-methylating communities from major rice-producing paddy soils across a transect of ∼3600 km and an altitude of ∼1300 m in China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!