The INT6 gene is a common integration site for the mouse mammary tumor virus in mouse mammary tumors. We have determined that the human homolog of INT6 is located on chromosome region 8q22-q23. A processed INT6 pseudogene is located on chromosome 6q. INT6 is composed of 13 exons that span 45 kb of genomic DNA. The deduced amino acid sequence of the gene product is identical to the mouse protein and contains three potential translation start signals. We have examined 100 primary breast carcinoma DNAs for evidence of genetic alteration affecting INT6. Loss of heterozyosity (LOH) was detected in 11 of 39 (28%) of the tumor samples informative for a polymorphic sequence in intron 7 of INT6. Since single-strand conformation and hybrid mismatch analysis of the remaining allele in these tumor DNAs failed to detect any mutations, we conclude that the target gene for LOH must be closely linked to INT6.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/geno.1997.4996 | DOI Listing |
Front Pharmacol
January 2025
Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Introduction: Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer to treat. While previous studies have demonstrated that ginsenoside Rh2 induces apoptosis in TNBC cells, the specific molecular targets and underlying mechanisms remain poorly understood. This study aims to uncover the molecular mechanisms through which ginsenoside Rh2 regulates apoptosis and proliferation in TNBC, offering new insights into its therapeutic potential.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China.
Increasing evidence has shown that physical exercise remarkably inhibits oncogenesis and progression of numerous cancers and exercise-responsive microRNAs (miRNAs) exert a marked role in exercise-mediated tumor suppression. In this research, expression and prognostic values of exercise-responsive miRNAs were examined in breast cancer (BRCA) and further pan-cancer types. In addition, multiple independent public and in-house cohorts, in vitro assays involving multiple, macrophages, fibroblasts, and tumor cells, and in vivo models were utilized to uncover the tumor-suppressive roles of miR-29a-3p in cancers.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
Background: Despite promising preclinical studies, the application of DNA methyltransferase inhibitors in treating patients with solid cancers has thus far produced only modest outcomes. The presence of intratumoral heterogeneity in response to DNA methyltransferase inhibitors could significantly influence clinical efficacy, yet our understanding of the single-cell response to these drugs in solid tumors remains very limited.
Methods: In this study, we used cancer/testis antigen genes as a model for methylation-dependent gene expression to examine the activity of DNA methyltransferase inhibitors and their potential synergistic effect with histone deacetylase inhibitors at the single-cancer cell level.
Cell Commun Signal
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, P. R. China.
Background: Cancer-associated fibroblasts (CAFs) are a pivotal component of the tumor microenvironment (TME), playing key roles in tumor initiation, metastasis, and chemoresistance. While glycosylation is known to regulate various cellular processes, its impact on CAFs activation remains insufficiently explored.
Methods: We assessed the correlation between bisecting GlcNAc levels and CAFs markers (α-SMA, PDGFRA, PDGFRB) in breast cancer tissues.
J Immunother Cancer
January 2025
IRCCS Humanitas Research Hospital, Rozzano, Italy
Background: ACKR2 is an atypical chemokine receptor that plays a significant role in regulating inflammation by binding to inflammatory CC chemokines and facilitating their degradation. Previous findings suggest that the genetic absence of ACKR2 leads to heightened tumor growth in inflammation-driven models. Conversely, mice lacking ACKR2 exhibit protection against lung metastasis in melanoma and breast cancer models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!