Frailty of two cell cycle checkpoints which prevent entry into mitosis and progression through early mitotic stages in higher plant cells.

Eur J Cell Biol

Departamento de Biología, Facultad de Ciencias, Universidad del Zulia, Maracaibo/Venezuela.

Published: November 1997

Allium cepa L. root meristems were given two short caffeine treatments spaced by 15 hours, the time which roughly corresponds to the duration of one cell cycle. In this way two subsequent cytokineses were prevented, and multinucleate cells with their in complement distributed into two, three or four nuclei were formed. Though all nuclei started to replicate synchronously in these cells, some of them (fast nuclei) completed their replication earlier than others (slow nuclei). The present report shows that two successive checkpoints operate before prometaphase in these cells. The first one prevents the entry of the fast nuclei into prophase until the slow ones have completed their replication. The second checkpoint ensures the synchronous entry into prometaphase after all nuclei have reached and finished prophase. By treating the multinucleate cells with an inhibitor of DNA synthesis at that time when fast but not slow nuclei had finished their replication, it was observed that both checkpoint mechanisms became leaky with time. Under these conditions the fast nuclei entered prophase in the presence of nuclei which were prevented from finishing the replication of their DNA. Subsequently, even prometaphase was triggered after a prolonged prophase. Finally, as expected from the presence of mitotic stages in these cells, nuclei with incompletely replicated DNA endured premature chromosome condensation. The prematurely condensed chromosomes either remained in a prometaphase-like stage until reconstitution nuclei formed or they followed the progression of the fast nuclei into metaphase and anaphase leading to the appearance of acentric chromosomal segments which after reconstitution gave rise to aneuploid nuclei containing unstable and broken DNA.

Download full-text PDF

Source

Publication Analysis

Top Keywords

fast nuclei
16
nuclei
13
cell cycle
8
mitotic stages
8
multinucleate cells
8
nuclei formed
8
completed replication
8
slow nuclei
8
cells
6
fast
5

Similar Publications

We report a new NMR method for treating two-site chemical exchange involving half-integer quadrupolar nuclei in a solution. The new method was experimentally verified with extensive Na ( = 3/2), K ( = 3/2), and Rb ( = 3/2) NMR results from alkali metal ions (Na, K, and Rb) in a solution over a wide range of molecular tumbling conditions. In the fast-motion limit, all allowed single-quantum NMR transitions for a particular quadrupolar nucleus are degenerate giving rise to one Lorentzian signal.

View Article and Find Full Text PDF

Circadian disruption of feeding-fasting rhythm and its consequences for metabolic, immune, cancer, and cognitive processes.

Biomed J

January 2025

ٰLaboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET. Buenos Aires, Argentina. Electronic address:

The circadian system is composed by a central hypothalamic clock at the suprachiasmatic nuclei (SCN) that communicates with peripheral circadian oscillators for daily coordination of behavior and physiology. The SCN entrain to the environmental 24-h light-dark (LD) cycle and drive daily rhythms of internal synchronizers such as core body temperature, hypothalamic-hypophysary hormones, sympathetic/parasympathetic activity, as well as behavioral and feeding-fasting rhythms, which supply signals setting core molecular clocks at central and peripheral tissues. Steady phase relationships between the SCN and peripheral oscillators keep homeostatic processes such as microbiota/microbiome composition/activity, metabolic supply/demand, energy balance, immunoinflammatory process, sleep amount and quality, psychophysiological stress, etc.

View Article and Find Full Text PDF

Ferroelectric hafnia exhibits promising robust polarization and silicon compatibility for ferroelectric devices. Unfortunately, it suffers from difficult polarization switching. Methods to enable easier polarization switching are needed, and the underlying reason for this switching difficulty is not understood.

View Article and Find Full Text PDF

The thalamus is a collection of gray matter nuclei that play a crucial role in sensorimotor processing and modulation of cortical activity. Characterizing thalamic nuclei non-invasively with structural MRI is particularly relevant for patient populations with Parkinson's disease, epilepsy, dementia, and schizophrenia. However, severe head motion in these populations poses a significant challenge for in vivo mapping of thalamic nuclei.

View Article and Find Full Text PDF

Acute and circadian feedforward regulation of agouti-related peptide hunger neurons.

Cell Metab

December 2024

Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA. Electronic address:

When food is freely available, eating occurs without energy deficit. While agouti-related peptide (AgRP) neurons are likely involved, their activation is thought to require negative energy balance. To investigate this, we implemented long-term, continuous in vivo fiber-photometry recordings in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!