Helicobacter pylori is an extremely diverse species. The characterization of strains isolated from individual patients should give insights into colonization and disease mechanisms and bacterial evolution. We studied H. pylori isolates from patients in the Japanese-Peruvian Polyclinic in Lima, Peru, by determining metronidazole susceptibility or resistance and by random amplified polymorphic DNA (RAPD) fingerprinting (a measure of overall genotype). Strains isolated from several biopsy specimens from each of 24 patients were studied. Both metronidazole-susceptible and -resistant strains were isolated from 13 patients, whereas strains of more than one RAPD type were isolated from only seven patients. We propose that the homogeneity in RAPD fingerprints for strains isolated from most persons reflects selection for particular H. pylori genotypes during chronic infection in individual hosts and the human diversity in traits that are important to this pathogen. Carriage of related metronidazole-resistant and -susceptible strains could reflect frequent metronidazole use in Peru and alternating selection for resistant and susceptible phenotypes during and after metronidazole therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/516081 | DOI Listing |
J Nat Prod
January 2025
Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States.
A structurally novel metabolite, fatuamide A (), was discovered from a laboratory cultured strain of the marine cyanobacterium sp., collected from Faga'itua Bay, American Samoa. A bioassay-guided approach using NCI-H460 human lung cancer cells directed the isolation of fatuamide A, which was obtained from the most cytotoxic fraction.
View Article and Find Full Text PDFPLoS One
January 2025
Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, Pakistan.
Arsenic-resistant Klebsiella oxytoca strain AT-02 was isolated from the ground water of the Multan region of Pakistan. The strain displayed high arsenite and arsenate resistance as minimal inhibitory concentration (MIC) was 600ppm and 10,000ppm respectively. The high tolerance of the isolated strain towards arsenate can be postulated due to significant increase in biofilm in response to arsenate.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, 781014, Assam, India.
Plant-associated microbiome plays important role in maintaining overall health of the host plant. Xanthium strumarium displaying resilience to various environmental fluctuations may harbor some bacterial isolates which can help this plant to grow worldwide. The present study aims to isolate endophytic and rhizospheric bacteria from X.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, Uruguay.
Proteases are hydrolases that act on peptide bonds, releasing amino acids and/or oligopeptides, and are involved in essential functions in all organisms. They represent an important segment of the global enzyme market, with applications in the food, leather, detergent, and pharmaceutical industries. Depending on their industrial use, proteases should exhibit high activity under extreme conditions, such as low temperatures, e.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.
Marine resources are attractive for screening new useful bacteria. From a marine sediment sample, we performed isolation and screening of bacterial strains in search of new bioactive compounds. HPLC and ESI-MS analysis indicated that the new bacterium, Lysinibacillus sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!