It is generally accepted that our sense of limb position and movement is provided, in part, by signals from muscle spindles, while the sense of muscle force derives from signals in tendon organs. Experiments are described here, using human subjects, in which the effects of eccentric and concentric exercise of elbow flexor muscles are compared on the sense of forearm position and the sense of tension in elbow flexors. Subjects were required to compress a preloaded spring with one arm, carrying out a concentric contraction in elbow flexors, then flexors of the other arm released the spring from compression and thereby carried out an eccentric contraction. The force of the spring was adjusted to be 20% maximum voluntary contraction (MVC), and each subject carried out a minimum of 120 contractions. Position sense was measured in blindfolded subjects by placing one forearm at a set angle and asking subjects to match it by positioning the other arm. Over 4 days postexercise, subjects placed the eccentrically exercised arms in a more extended position than the concentrically exercised arm suggesting that they thought the muscle was shorter than it actually was. In a force-matching task, subjects systematically undershot the target 10% MVC with their eccentrically exercised arm. Since it is known that eccentric exercise is associated with damage to muscle fibres, it is postulated that this leads to a disturbance of muscle receptors, the muscle spindles and tendon organs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-8993(97)00808-1 | DOI Listing |
Sci Rep
January 2025
Center for Research of the Aging Workforce, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan.
Improving physical balance among older workers is essential for preventing falls in workplace. We aimed to elucidate the age-related decline in one-leg standing time with eyes closed, an indicator of static balance, and mitigating influence of daily walking habits on this decline in Japan. This longitudinal study involved 249 manufacturing workers, including seven females, aged 20-66 years engaged in tasks performed at height in the aircraft and spacecraft machinery industry.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Biomechanics and Sport Injuries, Kharazmi University, Tehran, Iran (the Islamic Republic of).
Introduction: People with multiple sclerosis (PwMS) experience cognitive and motor impairments, including cognitive training and exercise training. This study compares dual task and combined exercise training in water and on land. Water-based training may enhance cognitive and motor function more effectively than land-based training, presenting a promising intervention for PwMS.
View Article and Find Full Text PDFBMC Geriatr
January 2025
Department of Neurosurgery, Yonsei University College of Medicine, 50, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
Background: Comparative studies of posterior lumbar interbody fusion with cortical bone trajectory and pedicle screw in older patients, particularly in those aged ≥ 80 years, are rare. This study aimed to retrospectively analyze the clinical and surgical outcomes following posterior lumbar interbody fusion with pedicle screw fixation compared to cortical bone trajectory in patients aged ≥ 80 years with degenerative lumbar spine disease.
Methods: We included 68 patients aged ≥ 80 years who underwent degenerative lumbar spinal surgery at our spine center between January 2011 and December 2020.
Narra J
December 2024
Departement of Nursing, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Falls among cognitively impaired older adults are a global concern. The aim of this study was to assess the efficacy of combining physical exercise and cognitive training to improve balance among older adults. A systematic search of databases, including Embase, Medline-OVID, CINAHL-EBSCOhost, and Central-Cochrane Library, was conducted from March 9 to April 6, 2023.
View Article and Find Full Text PDFExp Brain Res
January 2025
Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, MS 033, 415 South Street, Waltham, MA, 02453, USA.
Younger adults (YA) and older adults (OA) used a joystick to stabilize an unstable visual inverted pendulum (VIP) with a fundamental frequency (.27 Hz) of half that of bipedal human sway. Their task was to keep the VIP upright and to avoid ± 60° "fall" boundaries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!