Blood oxygenation level dependent (BOLD) MRI is sensitive to changes in regional oxygen supply versus demand and is therefore potentially useful in evaluating susceptibility to ischemic injury. Recently, we have demonstrated the use of BOLD MRI to evaluate intrarenal oxygenation using single shot echo-planar imaging (EPI). Here, we present an alternate implementation of BOLD MRI sequence, using multiple gradient echoes, that does not require any specialized hardware.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.1880070633DOI Listing

Publication Analysis

Top Keywords

bold mri
12
intrarenal oxygenation
8
breath-hold r2*
4
r2* mapping
4
mapping multiple
4
multiple gradient-recalled
4
gradient-recalled echo
4
echo sequence
4
sequence application
4
application evaluation
4

Similar Publications

Measuring the effects of motion corruption in fetal fMRI.

Hum Brain Mapp

February 2025

Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Irregular and unpredictable fetal movement is the most common cause of artifacts in in utero functional magnetic resonance imaging (fMRI), affecting analysis and limiting our understanding of early functional brain development. The accurate detection of corrupted functional connectivity (FC) resulting from motion artifacts or preprocessing, instead of neural activity, is a prerequisite for reliable and valid analysis of FC and early brain development. Approaches to address this problem in adult data are of limited utility in fetal fMRI.

View Article and Find Full Text PDF

Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined.

View Article and Find Full Text PDF

This study investigates the functional network underlying response inhibition in the human brain, particularly the role of the basal ganglia in successful action cancellation. Functional magnetic resonance imaging (fMRI) approaches have frequently used the stop-signal task to examine this network. We merge five such datasets, using a novel aggregatory method allowing the unification of raw fMRI data across sites.

View Article and Find Full Text PDF

Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro-scale level as measured by resting-state functional magnetic resonance imaging (rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window or temporal lags.

View Article and Find Full Text PDF

In contrast to blood-oxygenation level-dependent (BOLD) functional MRI (fMRI), which relies on changes in blood flow and oxygenation levels to infer brain activity, diffusion fMRI (DfMRI) investigates brain dynamics by monitoring alterations in the apparent diffusion coefficient (ADC) of water. These ADC changes may arise from fluctuations in neuronal morphology, providing a distinctive perspective on neural activity. The potential of ADC as an fMRI contrast (ADC-fMRI) lies in its capacity to reveal neural activity independently of neurovascular coupling, thus yielding complementary insights into brain function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!