The binding of insulin to its receptor initiates multiple signal transduction pathways regulating such diverse processes as proliferation, differentiation, glucose transport, and glycogen metabolism. The STAT-family of transcription factors has been demonstrated to play a critical role in gene induction by a variety of hemopoietic cytokines and hormones. Furthermore, constitutive activation of STATs is observed in transformed cells. Here we describe activation of a transcriptional complex binding to a consensus STAT-transcriptional element in response to insulin challenge. This complex is induced rapidly after tyrosine autophosphorylation of the insulin receptor, and is sustained for several hours. Supershift analysis of the insulin-induced complex reveals that it specifically contains the transcription factor Stat3. DAN binding of this complex is inhibited by pre-incubation with tyrosine, but not serine/threonine protein kinase inhibitors, whereas transcriptional activation is inhibited by both. Utilising a dominant negative mutant of p21ras we demonstrate that both insulin-induced Stat3 DNA-binding and also transactivation do not require p21ras. Furthermore, although previous studies have suggested a role for MAP kinases (ERKs) and PI-3K in STAT activation, utilising the specific MEK inhibitor PD098059 and the PI-3K inhibitor wortmannin, we demonstrate that activation of ERKs or PI-3K are not required for insulin induced Stat3 phosphorylation or transactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1201429DOI Listing

Publication Analysis

Top Keywords

signal transduction
8
insulin receptor
8
erks pi-3k
8
insulin
5
activation
5
insulin activates
4
stat3
4
activates stat3
4
stat3 independently
4
independently p21ras-erk
4

Similar Publications

Genes involved in DMSO-mediated yield increase of entomopathogenic nematodes.

Sci Rep

December 2024

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.

Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.

View Article and Find Full Text PDF

The Auxin Response Factors (ARFs) family of transcription factors are the central mediators of auxin-triggered transcriptional regulation. Functionally different classes of extant ARFs operate as antagonistic auxin-dependent and -independent regulators. While part of the evolutionary trajectory to the present auxin response functions has been reconstructed, it is unclear how ARFs emerged, and how early diversification led to functionally different proteins.

View Article and Find Full Text PDF

The FvABF3-FvALKBH10B-FvSEP3 cascade regulates fruit ripening in strawberry.

Nat Commun

December 2024

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.

View Article and Find Full Text PDF

The benefits of sleep extend beyond the nervous system. Peripheral tissues impact sleep regulation, and increased sleep is observed in response to damaging conditions, even those that selectively affect non-neuronal cells. However, the 'sleep need' signal released by stressed tissues is not known.

View Article and Find Full Text PDF

Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!