Activation of the transcriptional regulator AP-1, a dimeric complex formed of various combinations of Fos and Jun proteins, is a key step in the cellular response to mitogens. Because different dimers are believed to display different regulatory functions, we hypothesized that transformed cells that lack normal growth constraints might display AP-1 dimers that are different from those of normal cells. We therefore compared in primary and transformed rat hepatocytes (1) the composition of AP-1 dimers under basal conditions and (2) AP-1 induction by epidermal growth factor (EGF). Under basal conditions, AP-1 contained predominantly Jun homodimers in both cell types. However, whereas normal hepatocytes contained only JunD, both JunD and JunB were present in the AP-1 complex of 7777 cells. EGF treatment triggered almost identical programs of fos and jun gene activation at the messenger RNA (mRNA) level in both cell types, with an early accumulation of c-fos, c-jun, and junB mRNAs, but no change in junD mRNA levels. In both cell types, c-Fos and Fra-1 proteins increased after EGF treatment, but differences in the induction of Jun proteins were noted, with an increase of c-Jun in hepatocytes and an increase of JunB in 7777 cells. In both cell types, activation of AP-1 DNA binding activity by EGF was accompanied by the recruitment of Fra-1 into AP-1, detected earlier in 7777 cells than in hepatocytes, and with the transient appearance of c-Fos in 7777 cells only. Finally, EGF activated AP-1-dependent transcription in 7777 cells but not in hepatocytes. These data indicate important differences in the functional activity of AP-1 in transformed hepatocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.510260614DOI Listing

Publication Analysis

Top Keywords

7777 cells
20
cell types
16
ap-1 dimers
12
basal conditions
12
ap-1
10
dimers normal
8
transformed rat
8
rat hepatocytes
8
epidermal growth
8
growth factor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!