A chemotaxis chamber has been developed to analyze both the velocity and the directionality of individual T cells in gradients of high molecular mass molecules over long periods of time. Employing this chamber, it is demonstrated that syncytia induced by HIV in SUP-T1 cell cultures release two T cell chemoattractants with approximate molecular masses of 30 and 120 kDa. Neither uninfected single cells nor polyethylene glycol-induced syncytia release detectable chemoattractant, suggesting that these chemoattractants are linked to HIV infection. Soluble gp120 functions as a T cell chemoattractant and the addition of anti-gp120 antibody to syncytium-conditioned medium blocks the high molecular mass chemoattractant activity but not the low molecular mass activity. The addition of anti-CD4 antibody to syncytium-conditioned medium also blocks the high molecular mass chemoattractant activity but not the low molecular mass activity. These results demonstrate that HIV-induced T cell syncytia release a low and a high molecular mass T cell chemoattractant, and suggest that the high molecular mass factor is gp120 and that it functions through the CD4 receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.111.1.99 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!