It has been estimated that over three million workers in the USA are potentially exposed to silica or other mineral dusts. Results of epidemiological studies evaluating whether silica or glass fibers increase lung cancer risk to the exposed workers are inconclusive. Detection of DNA damage in cells exposed to genotoxic agents is being used to assess the carcinogenic potential of environmental agents. The alkaline (pH > 13) single cell gel/comet (SCG) assay was used to determine and compare DNA damage in cultured Chinese hamster lung fibroblasts (V79 cells) and human embryonic lung fibroblasts (Hel 299 cells) exposed to crystalline silica (Min-U-Sil 5), amorphous silica (Spherisorb), carbon black, and glass fibers (AAA-10). V79 or Hel 299 cells were exposed to these mineral dusts for 3 h at various concentrations. Min-U-Sil 5 and AAA-10, at almost all concentrations tested, caused a significant increase in DNA migration measured as tail length in both V79 and Hel 299 exposed cells. However, the increase was much higher in V79 then in Hel 299 cells for Min-U-Sil 5. Tail length was also increased relative to controls after amorphous silica treatment, but not to the same extent as that induced by crystalline silica. Exposure to carbon black did not induce DNA migration at any of the concentrations tested. These results indicate that silica and glass fibers, but not carbon black, can induce DNA damage in mammalian cells, and that crystalline silica has a higher DNA-damaging activity than amorphous silica. For glass fibers, induction of DNA damage in both V79 and Hel 299 cells was observed even at a concentration 10 times lower than silica and the response was similar in both cell lines. These results suggest that the SCG/comet assay is useful for the detection of DNA damage caused by occupationally related dusts/particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1383-5718(97)00094-6 | DOI Listing |
Sci Rep
January 2025
NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
Identifying novel targets for molecular radiosensitization is critical for improving the efficacy of colorectal cancer (CRC) radiotherapy. Alpha-thalassemia/mental retardation X-linked (ATRX), a member of the SWI/SNF-like chromatin remodeling protein family, functions in the maintenance of genomic integrity and the regulation of apoptosis and senescence. However, whether ATRX is directly involved in the radiosensitivity of CRC remains unclear.
View Article and Find Full Text PDFGenomics
January 2025
Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:
X-ray irradiation induces widespread changes in gene expression. Positioned at the bottom of the central dogma, translational regulation responds swiftly to environmental stimuli, fine-tuning protein levels. However, the global view of mRNA translation following X-ray exposure remains unclear.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, China. Electronic address:
Background: Lung squamous cell carcinoma (LUSC) is a significant health concern, characterized by a lack of specific therapies and limited treatment options for patients in advanced stages. This study aims to identify key molecules of prognostic importance in LUSC and provide an experimental foundation for their potential therapeutic applications.
Methods: Immune-related transcriptome expression analysis was performed on LUSC samples using the NanoString digital gene analysis system to develop a prognostic transcriptomic signature.
J Hazard Mater
December 2024
College of Life Science, Henan Normal University, Xinxiang 453007, China. Electronic address:
The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, A Coruña 15071, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, A Coruña 15006, Spain. Electronic address:
Nanoceria, or cerium dioxide nanoparticles (CeO NP), are increasingly employed in a number of industrial and commercial applications. Hence, the environmental presence of these nanoparticles is growing progressively, enhancing the global concern on their potential health effects. Recent studies suggest that nanoceria may also have promising biomedical applications particularly in neurodegenerative and brain-related pathologies, but studies addressing their toxicity, and specifically on the nervous system, are still scarce, and their potential adverse effects and action mechanism are not totally understood yet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!