TRAF2 is an intracellular signal-transducing protein recruited to the TNFR1 and TNFR2 receptors following TNF stimulation. To investigate the physiological role of TRAF2, we generated TRAF2-deficient mice. traf2-/- mice appeared normal at birth but became progressively runted and died prematurely. Atrophy of the thymus and spleen and depletion of B cell precursors also were observed. Thymocytes and other hematopoietic progenitors were highly sensitive to TNF-induced cell death and serum TNF levels were elevated in these TRAF2-deficient animals. Examination of traf2-/- cells revealed a severe reduction in TNF-mediated JNK/SAPK activation but a mild effect on NF-kappaB activation. These results suggest that TRAF2-independent pathways of NF-kappaB activation exist and that TRAF2 is required for an NF-kappaB-independent signal that protects against TNF-induced apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1074-7613(00)80391-xDOI Listing

Publication Analysis

Top Keywords

nf-kappab activation
12
tnf-induced cell
8
cell death
8
traf2-deficient mice
8
early lethality
4
lethality functional
4
functional nf-kappab
4
activation
4
activation increased
4
increased sensitivity
4

Similar Publications

Background: Ubiquitination and deubiquitination are involved in the progression of human diseases, including acute pneumonia. In this study, we aimed to explore the functions of ubiquitin-specific peptidase 9X-linked (USP9X) in lipopolysaccharide (LPS)-treated WI-38 cells. Methods: WI-38 cells were treated with LPS to induce the cellular damage and inflammation.

View Article and Find Full Text PDF

Previous studies have reported that chronic lymphocytic leukemia (CLL) shows a de novo chromatin activation pattern as compared to normal B cells. Here, we explored whether the level of chromatin activation is related to the clinical behavior of CLL. We identified that in some regulatory regions, increased de novo chromatin activation is linked to clinical progression whereas, in other regions, it is associated with an indolent course.

View Article and Find Full Text PDF

In most solid tumors, cellular energy metabolism is primarily dominated by aerobic glycolysis, which fulfills the high demand for biomacromolecules at the expense of reduced ATP production efficiency. Elucidation of the mechanisms by which rapidly proliferating malignant cells acquire sufficient energy in this state of inefficient ATP production from glycolysis could enable development of metabolism targeted therapeutic strategies. In this study, we observed a significant association between elevated expression levels of the long non-coding RNA (lncRNA) SNHG17 and unfavorable prognosis in breast cancer (BCa).

View Article and Find Full Text PDF

Mineral Stress Drives Loss of Heterochromatin: An Early Harbinger of Vascular Inflammaging and Calcification.

Circ Res

January 2025

British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.).

Background: Vascular calcification is a detrimental aging pathology markedly accelerated in patients with chronic kidney disease. Prelamin A is a biomarker of vascular smooth muscle cell aging that accelerates calcification however the mechanisms remain undefined.

Methods: Vascular smooth muscle cells were transduced with prelamin A using an adenoviral vector and epigenetic modifications were monitored using immunofluorescence and targeted polymerase chain reaction array.

View Article and Find Full Text PDF

Background: Polydatin (PD), also known as tiger cane glycoside, is a natural compound extracted from the Japanese knotweed plant, which is often referred to as white resveratrol. It exhibits anti-inflammatory, antioxidant, and anti-apoptotic effects in the treatment of various diseases. However, the potential molecular mechanisms of PD in osteoarthritis have not been clearly elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!