Most antitumor agents exert their cytotoxic effect through the induction of apoptosis, and this process may be mediated through an elevation in p53 protein, with a subsequent increase in bax and decrease in bcl-2. p53 also increases mdm-2 expression and mdm-2 may then bind and inactivate p53. Cells from 31 patients with chronic lymphocytic leukemia (CLL) were treated in vitro with 2-chlorodeoxyadenosine (CdA), arabinosyl-2-fluoroadenine (F-ara-A), or chlorambucil (CLB) and drug sensitivity measured using the MTT assay. The protein levels of bax and bcl-2 were measured in CLL cells from 25 patients, and were found to be higher in leukemic cells than in normal B cells. The bcl-2 levels varied three-fold, the bax levels fifteen-fold, and the bax:bcl-2 ratios ranged from 0.44 to 2.91. The expression of mdm-2 mRNA was measured in CLL cells from 28 patients and was found to vary twenty-fold. However, no correlation was observed between drug sensitivity to CdA, F-ara-A, or CLB and the cellular levels of mdm-2 mRNA, or the protein levels of bax or bcl-2, or the bax:bcl-2 ratio. Treatment of CLL cells having wild type p53 with CdA, F-ara-A or CLB produced an increase in p53 protein and mdm-2 mRNA. This was not observed in cells having a p53 mutation, and these cells were highly resistant to both CLB and the nucleoside analogs. In contrast to the nucleoside analogs and CLB, dexamethasone and vincristine had no effect on mdm-2 mRNA levels. Treatment of CLL cells containing a wild type p53 gene with CdA, F-ara-A, or CLB, did not produce any consistent changes in bax or bcl-2. Thus, CdA, F-ara-A and CLB appear to act in CLL cells through a p53-dependent pathway, whereas this does not occur with dexamethasone or vincristine. The cellular levels of mdm-2, bcl-2, bax or the bax:bcl-2 ratios are not predictive indicators of clinical sensitivity in CLL, but an increase in mdm-2 levels after drug treatment is indicative of p53 function in these cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10428199709050881 | DOI Listing |
Blood
January 2025
IDIBAPS, Barcelona, Spain.
Previous studies have reported that chronic lymphocytic leukemia (CLL) shows a de novo chromatin activation pattern as compared to normal B cells. Here, we explored whether the level of chromatin activation is related to the clinical behavior of CLL. We identified that in some regulatory regions, increased de novo chromatin activation is linked to clinical progression whereas, in other regions, it is associated with an indolent course.
View Article and Find Full Text PDFVaccine
January 2025
Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy. Electronic address:
CLL patients face increased vulnerability to COVID-19 because of weakened immune systems from comorbidities and treatments. Therefore, the need for these patients of vaccination is of outermost importance. In our study we have evaluated T cell-mediated responses to COVID19 vaccines by performing the activation-induced markers (AIM) assay which allows to determine spike-specific CD4+ and CD8+ T cell responses.
View Article and Find Full Text PDFHemasphere
January 2025
Laboratory of Clinical Cell Therapy Université Libre de Bruxelles (ULB), Jules Bordet Institute Brussels Belgium.
Chronic lymphocytic leukemia (CLL) cells receive several stimuli from surrounding cells, such as B-cell receptor (BCR) stimulation, and can manipulate their microenvironment via extracellular vesicle (EV) release. Here, we investigated the small RNA content (microRNA and YRNA) of CLL-EVs from leukemic cells cultured with/without BCR stimulation. We highlight an increase of miR-155-5p, miR-146a-5p, and miR-132-3p in EVs and in cells after BCR stimulation ( < 0.
View Article and Find Full Text PDFMol Ther
January 2025
Leibniz Institute for Immunotherapy (LIT), Division of Genetic Immunotherapy, Regensburg, Germany. Electronic address:
A rapidly growing number of chimeric antigen receptors (CARs) is being translated into cell therapy for malignant and autoimmune diseases. While cancer cell-selective CAR targeting is undergoing continuous refinement, specific testing for overlooked recognition of healthy tissues is commonly not performed, which potentially results in underestimating of the risk of severe tissue damage upon CAR T cell application. Using the FcμR/IgM receptor/FAIM3/TOSO-specific CAR, designed to target chronic lymphocytic leukemia cells, we exemplarily outline a screen to uncover reactivities to healthy tissues and discuss the value of such pre-clinical testing to improve safety in CAR T cell application.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA. Electronic address:
Current treatments for acute myeloid leukemia (AML) remain challenging, characterized by poor clinical outcomes. Exosomes, cell-derived membranous vesicles, has been emerging as a new modality of therapy. Here we designed and generated genetically reprogrammed exosomes with surface displayed antibodies and immunoregulatory proteins, namely programmed immune-engaging exosomes (PRIME Exos).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!