Phosphorylation of recombinant N-syndecan (syndecan 3) core protein.

Biochem Biophys Res Commun

Department of Cellular and Molecular Physiology, Penn State College of Medicine, Pennsylvania State University, Danville 17822-2613, USA.

Published: November 1997

The cytoplasmic domain of the syndecan family of heparan sulfate proteoglycans is punctuated by the presence of four regularly spaced tyrosine residues. In this report, we explore the possibility of whether the four tyrosine residues in the cytoplasmic domain of N-syndecan (Syndecan 3) are potential substrates for phosphorylation by a tyrosine kinase. Bacterially expressed elk kinase was used to phosphorylate a series of bacterially expressed N-syndecan fusion proteins. Our results clearly demonstrate that the tyrosine residues in the cytoplasmic domain of N-syndecan can be phosphorylated by a tyrosine-specific kinase, and that all four tyrosine residues are capable of being phosphorylated.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.1997.7684DOI Listing

Publication Analysis

Top Keywords

tyrosine residues
16
cytoplasmic domain
12
n-syndecan syndecan
8
residues cytoplasmic
8
domain n-syndecan
8
bacterially expressed
8
tyrosine
5
phosphorylation recombinant
4
n-syndecan
4
recombinant n-syndecan
4

Similar Publications

A phytoplasma effector suppresses insect melanization immune response to promote pathogen persistent transmission.

Sci Adv

January 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.

Insect melanization triggered by the conversion of prophenoloxidase to active phenoloxidase via serine proteases (SPs) is an important immediate immune response. However, how phytoplasmas evade this immune response to promote their propagation in insect vectors remains unknown. Here, we demonstrate that infection of leafhopper vectors with rice orange leaf phytoplasma (ROLP) activates the mild melanization response in hemolymph.

View Article and Find Full Text PDF

O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40).

View Article and Find Full Text PDF

AhASRK1, a peanut dual-specificity kinase that activates the Ca-ROS-MAPK signalling cascade to mediate programmed cell death induced by aluminium toxicity via ABA.

Plant Physiol Biochem

January 2025

Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:

Aluminium (Al)-induced programmed cell death (PCD) is thought to be a main cause of Al phytotoxicity. However, the underlying mechanism by which Al induces PCD in plants is unclear. In this study, we characterized the function of AhASRK1 (Aluminum Sensitive Receptor-like protein Kinase1), an Al-induced LRR-type receptor-like kinase gene.

View Article and Find Full Text PDF

Signaling pathways play key roles in many important biological processes, such as cell division, differentiation, and migration. Phosphorylation site-specific antibodies specifically target proteins phosphorylated on a given tyrosine, threonine, or serine residue. The use of phospho-specific antibodies facilitates the analysis of signaling pathway regulation and activity.

View Article and Find Full Text PDF

During the life cycle of the influenza virus, viral RNPs (vRNPs) are transported to the nucleus for replication. Given that a large number of progeny viral RNA occupies the nucleus, whether there is any host protein located in the nucleus that recognizes the viral RNA and inhibits the viral replication remains largely unknown. In this study, to explore the role of hnRNPH1 in influenza virus infection, we knocked down and over-expressed the hnRNPH1 proteins in 293T cells, then infected the cells with the influenza virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!