The cytoprotective action of reviparin-sodium (LU-47311: Clivarin), a low-molecular-weight heparin, was examined in an ex vivo model of complement-mediated myocardial injury. The effective concentration of reviparin was determined by using an in vitro rabbit erythrocyte-lysis assay using 4% normal human plasma. Reviparin (0.01-2.73 mg/ml) reduced erythrocyte lysis in a concentration-dependent manner. Subsequently, 0.91 mg/ml of reviparin was evaluated in an ex vivo rabbit isolated-heart model of human complement-mediated injury. Hearts perfused in the presence of 0.91 mg/ml of reviparin (n = 10) demonstrated significant preservation of ventricular function compared with vehicle-treated hearts (n = 10), as evidenced by coronary artery perfusion pressure, left ventricular developed pressure, and left ventricular end-diastolic pressure. A reduction in myocyte creatine kinase release was observed in reviparin-treated hearts compared with controls. Myocardial injury in vehicle-treated hearts was associated with an increased assembly of the membrane-attack complex, as determined by immunohistochemical localization of C5b-9 neoantigen. Reviparin decreased fluid-phase Bb formation detected in the lymphatic drainage of plasma-perfused hearts. The results of this study demonstrate that reviparin inhibits complement-mediated myocardial injury as assessed in an ex vivo experimental model of complement activation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00005344-199711000-00017DOI Listing

Publication Analysis

Top Keywords

myocardial injury
16
complement-mediated myocardial
12
091 mg/ml
8
mg/ml reviparin
8
vehicle-treated hearts
8
pressure left
8
left ventricular
8
reviparin
6
injury
5
hearts
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!