Pyramidal cells in the rat hippocampus fire whenever the animal is in a particular place, suggesting that the hippocampus maintains a representation of the environment. Receptive fields of place cells (place fields) are largely determined by the distance of the rat from environmental walls. Because these walls are sometimes distinguishable only by their orientation with respect to the outside room, it has been hypothesised that a polarising directional input enables the cells to locate their fields off-centre in an otherwise symmetrical environment. We tested this hypothesis by gaining control of the rat's internal directional sense, independently of other cues, to see whether manipulating this sense could, by itself, produce a corresponding alteration in place field orientation. Place cells were recorded while rats foraged in a rectangular box, in the absence or presence of external room cues. With room cues masked, slow rotation of the rat and the box together caused the fields to rotate accordingly. Rotating the recording box alone by 180 degrees rarely caused corresponding field rotation, while rotating the rat alone 180 degrees outside the environment and then replacing it in the recording box almost always resulted in a corresponding rotation of the fields. This shows that place field orientation can be controlled by controlling the internal direction-sense of the rat, and it opens the door to psycho-physical exploration of the sensory basis of the direction sense. When room cues were present, distal visual cues predominated over internal cues in establishing place field orientation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s002210050206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!