Methionyl-adenylate, the mixed carboxylic-phosphoric acid anhydride synthesized by methionyl-tRNA synthetase (MetRS) is capable of reacting with this synthetase or other proteins, by forming an isopeptide bond with the epsilon-NH2 group of lysyl residues. It is proposed that the mechanism for the in vitro methionylation of MetRS might be accounted for by the in situ covalent reaction of methionyl-adenylate with lysine side chains surrounding the active center of the enzyme, as well as by exchange of the label between donor and acceptor proteins. Following the incorporation of 7.0 +/- 0.5 mol of methionine per mol of a monomeric truncated methionyl-tRNA synthetase species, the enzymic activities of [32P]PPi-ATP isotopic exchange and tRNA(Met) aminoacylation were lowered by 75% and more than 90%, respectively. The addition of tRNA(Met) protected the enzyme against inactivation and methionine incorporation. Matrix-assisted laser desorption-ionization mass spectrometry designated lysines-114, -132, -142 (or -147), -270, -282, -335, -362, -402, -439, -465, and -547 of truncated methionyl-tRNA synthetase as the target residues for covalent binding of methionine. These lysyl residues are distributed at the surface of the enzyme between three regions [114-150], [270-362], and [402-465], all of which were previously shown to be involved in catalysis or to be located in the binding sites of the three substrates, methionine, ATP, and tRNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2143599PMC
http://dx.doi.org/10.1002/pro.5560061116DOI Listing

Publication Analysis

Top Keywords

methionyl-trna synthetase
12
matrix-assisted laser
8
laser desorption-ionization
8
desorption-ionization mass
8
mass spectrometry
8
lysyl residues
8
truncated methionyl-trna
8
covalent methionylation
4
methionylation escherichia
4
escherichia coli
4

Similar Publications

Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease.

Int J Mol Sci

January 2025

Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland.

Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation.

View Article and Find Full Text PDF

A novel methionyl-tRNA synthetase inhibitor targeting gram-positive bacterial pathogens.

Antimicrob Agents Chemother

December 2024

Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA.

New antibiotics are needed to treat gram-positive bacterial pathogens. is a novel inhibitor of methionyl-tRNA synthetase with selective activity against gram-positive bacteria. The minimum inhibitory concentrations (MICs) against and species range from 0.

View Article and Find Full Text PDF
Article Synopsis
  • - Brucellosis, caused by the Brucella bacterium, leads to serious economic losses in livestock due to reproductive issues and reduced milk production, coupled with antibiotic resistance complicating treatment efforts.
  • - This study focuses on isolating a compound called piperolactam A from Piper betle leaves, aiming to evaluate its potential as an antibacterial agent against Brucella sp. and its mechanism of action against specific enzymes in bacteria.
  • - Through molecular docking methods, the research shows that piperolactam A exhibits strong binding affinity to leucyl-tRNA synthetase (LeuRS), suggesting it could effectively inhibit bacterial growth by disrupting protein synthesis.
View Article and Find Full Text PDF

Light-Activatable, Cell-Type Specific Labeling of the Nascent Proteome.

ACS Chem Neurosci

October 2024

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Elucidating the mechanisms by which protein synthesis contributes to complex biological processes has remained a challenging endeavor. This is particularly true in the field of neuroscience, where multiple, tightly regulated periods of new protein synthesis in different cell-types are thought to facilitate intricate neurological functions, such as memory formation. Current methods for labeling the proteome have lacked the spatial and temporal resolution to accurately discriminate these overlapping and often competing windows of mRNA translation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!