Stability study of novel zinc complexes of pharmaceutical relevance by CE.

J Capillary Electrophor

Department of Analytical Chemistry, Johannes Kepler University, Linz, Austria.

Published: December 1997

CE was used as a stability-indicating assay for zinc mixed-ligand complexes with promised biological activity. CE measurements indicated that Zn(RCOO)2Ln compounds (where R = H, CH3, C2H5, or C3H7; L = caffeine, nicotinic acid, thiourea, or phenazone; and n = 1 or 2) in water tend to decompose at room temperature. For thiourea and phenazone compounds, the degradation products (free zinc ion, carboxylate anion, and the corresponding neutral ligand) were found to increase within a few hours of storage in water. More stable complexes of caffeine and nicotinic acid showed no appreciable changes in CE behavior during the same period of time and only decomposed notably after 10 hr. The stability differences of zinc complexes were characterized in terms of apparent half-life values and rate constants of decomposition reaction. Relationships between the stability and structure of the complexes are discussed, and theoretical interpretation is presented.

Download full-text PDF

Source

Publication Analysis

Top Keywords

zinc complexes
8
caffeine nicotinic
8
nicotinic acid
8
thiourea phenazone
8
complexes
5
stability study
4
study novel
4
zinc
4
novel zinc
4
complexes pharmaceutical
4

Similar Publications

Advancing cancer therapy with custom-built alternating electric field devices.

Bioelectron Med

January 2025

School of Pharmacy, Biodiscovery Institute & Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK.

Background: In glioblastoma (GBM) therapy research, tumour treating fields by the company Novocure™, have shown promise for increasing patient overall survival. When used with the chemotherapeutic agent temozolomide, they extend median survival by five months. However, there is a space to design alternative systems that will be amenable for wider use in current research.

View Article and Find Full Text PDF

PLATZ transcription factors and their emerging roles in plant responses to environmental stresses.

Plant Sci

January 2025

College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, Zhejiang, China. Electronic address:

Plant A/T-rich sequence- and zinc-binding (PLATZ) family proteins represent a novel class of plant-specific transcription factors that bind to A/T-rich sequences. Advances in high-throughput sequencing and bioinformatics analyses have facilitated the identification of numerous PLATZ proteins across various plant species. Over the last decade, accumulating evidence from omics analyses, genetics studies, and gain- and loss-of function investigations has indicated that PLATZ proteins play crucial roles in the complex regulatory networks governing plant development and adaptation to environmental stress.

View Article and Find Full Text PDF

Transition metal complexes: next-generation photosensitizers for combating Gram-positive bacteria.

Future Med Chem

January 2025

Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R., China.

The rise of antibiotic-resistant Gram-positive bacterial infections poses a significant threat to public health, necessitating the exploration of alternative therapeutic strategies. A photosensitizer (PS) can convert energy from absorbed photon into reactive oxygen species (ROS) for damaging bacteria. This photoinactivation action bypassing conventional antibiotic mechanism is less prone to resistance development, making antibacterial photodynamic therapy (aPDT) highly efficient in combating Gram-positive bacteria.

View Article and Find Full Text PDF

Specific modulation of 28S_Um2402 rRNA 2'--ribose methylation as a novel epitranscriptomic marker of ZEB1-induced epithelial-mesenchymal transition in different mammary cell contexts.

NAR Cancer

March 2025

Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France.

The epithelial-mesenchymal transition (EMT) is a dynamic transdifferentiation of epithelial cells into mesenchymal cells. EMT programs exhibit great diversity, based primarily on the distinct impact of molecular activities of the EMT transcription factors. Using a panel of cancer cell lines and a series of 71 triple-negative primary breast tumors, we report that the EMT transcription factor ZEB1 modulates site-specific chemical modifications of ribosomal RNA (rRNA).

View Article and Find Full Text PDF

Chewing-Activated TRPV4/PIEZO1--Zn Axes in a Rat Periodontal Complex.

J Dent Res

January 2025

Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA.

The upstream mechanobiological pathways that regulate the downstream mineralization rates in periodontal tissues are limitedly understood. Herein, we spatially colocalized and correlated compression and tension strain profiles with the expressions of mechanosensory ion channels (MS-ion) TRPV4 and PIEZO1, biometal zinc, mitochondrial function marker (), cell senescence indicator (), and oxygen status marker hypoxia-inducible factor-1α () in rats fed hard and soft foods. The observed zinc and related cellular homeostasis in vivo were ascertained by TRPV4 and PIEZO1 agonists and antagonists on human periodontal ligament fibroblasts ex vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!