The mouse H19 locus mediates a transition between imprinted and non-imprinted DNA replication patterns.

Hum Mol Genet

Department of Genetics, Yale University School of Medicine, 333 Cedar Street, PO Box 208081, New Haven, CT 06520-8081, USA.

Published: January 1998

Genes subject to genomic imprinting generally occur in clusters of hundreds of kilobases. These domains exhibit several gamete of origin-dependent manifestations, including a pattern of asynchronous replication when studied by fluorescence in situ hybridization (FISH). We find a transition from asynchronous replication at the imprinted mouse H19 gene to synchronous replication at the downstream Rpl23 gene, the human homologue of which appears to be non-imprinted. Two-colour FISH demonstrates that this transition is due solely to a difference in replication timing between the upstream and downstream chromatin on the later-replicating (maternal) chromosome. This difference is lost in mice deleted for the H19 gene body and 9.9 kb of upstream DNA when this deletion is maternally inherited, with synchronous replication patterns extending over 110 kb upstream from the deleted area. No effect is seen when the deletion is paternally inherited. The presence of a boundary element in this region has been suggested by observations of position-independent expression of H19 -containing transgenes and the blocking of accessibility of downstream enhancers to the upstream Igf2 and Ins2 genes on the maternal chromosome. The FISH studies presented here demonstrate the insulation of replication patterns within the imprinted domain from downstream, non-imprinted chromatin, mediated by an element at the H19 locus which is subject to genomic imprinting.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/7.1.91DOI Listing

Publication Analysis

Top Keywords

replication patterns
12
mouse h19
8
h19 locus
8
subject genomic
8
genomic imprinting
8
asynchronous replication
8
h19 gene
8
synchronous replication
8
maternal chromosome
8
replication
7

Similar Publications

Replication timing (RT) allows us to analyze temporal patterns of genome-wide replication, i.e., if genes replicate early or late during the S-phase of the cell cycle.

View Article and Find Full Text PDF

The coronavirus main protease (MPro) plays a pivotal role in viral replication and is the target of several antivirals against SARS-CoV-2. In some species, CRCs of MPro enzymatic activity can exhibit biphasic behavior in which low ligand concentrations activate the enzyme whereas higher ones inhibit it. While this behavior has been attributed to ligand-induced dimerization, quantitative enzyme kinetics models have not been fit to it.

View Article and Find Full Text PDF

Are We Moving Too Fast?: Representation of Speed in Static Images.

J Cogn

January 2025

Department of Communication and Cognition, Tilburg School of Humanities and Digital Sciences, Tilburg University, The Netherlands.

Despite pictures being static representations, they use various cues to suggest dynamic motion. To investigate the effectiveness of different motion cues in conveying speed in static images, we conducted 3 experiments. In Experiment 1, we compared subjective speed ratings given for motion lines trailing behind movers, suppletion lines replacing parts of the movers and backfixing lines set in the background against the baseline of having no extra cue.

View Article and Find Full Text PDF

Understanding the behavior of sand screens is crucial for optimizing sand control strategies and preventing wellbore failure, which can significantly impact reservoir management and production efficiency. This paper presents a comprehensive experimental and numerical modeling study on sand screen performance, aimed at providing insights prior to real-field applications. The study evaluated a 200-μm wire-wrapped screen (WWS) using slurry tests to determine the amount of sand retained, sand produced and retained permeability to assess screen efficiency.

View Article and Find Full Text PDF

Polymeric micro- and nanoparticles are useful vehicles for delivering cytokines to diseased tissues such as solid tumors. Double emulsion solvent evaporation is one of the most common techniques to formulate cytokines into vehicles made from hydrophobic polymers; however, the liquid-liquid interfaces formed during emulsification can greatly affect the stability and therapeutic performance of encapsulated cytokines. To develop more effective cytokine-delivery systems, a clear molecular understanding of the interactions between relevant proteins and solvents used in the preparation of such particles is needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!