We have discovered and analysed two novel, linear extrachromosomal double-stranded RNAs (dsRNAs) within oocysts of major north Amercian isolates of Cryptosporidium parvum, a parasitic protozoan that infects the gastrointestinal tract of a variety of mammals, including humans. These dsRNAs were found to reside within the cytoplasm of sporozoites, and were not detected in other species of the genus. cDNAs representing both dsRNA genomes were cloned and sequenced, 1786 and 1374 nt, and each encoded one large open reading frame (ORF). The deduced protein sequence of the larger dsRNA (L-dsRNA) had homology with viral RNA-dependent RNA polymerases (RDRP), with more similarity to polymerases from fungi than those from other protozoa. The deduced protein sequence from the smaller dsRNA (S-dsRNA) had limited similarity with mitogen-activated c-June NH2 terminal protein kinases (JNK) from mammalian cells. Attempts to visually identify or purify virus-like particles associated with the dsRNAs were unsuccessful. Sensitivity of the dsRNAs to RNase A also suggests that the dsRNAs may be unencapsidated. A RDRP activity was identified in crude extracts from C. parvum sporozoites and products of RNA polymerase activity derived in vitro were similar to the dsRNAs purified directly from the parasites.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.1997.5721933.xDOI Listing

Publication Analysis

Top Keywords

double-stranded rnas
8
parasitic protozoan
8
cryptosporidium parvum
8
deduced protein
8
protein sequence
8
dsrnas
6
virus-like double-stranded
4
rnas parasitic
4
protozoan cryptosporidium
4
parvum discovered
4

Similar Publications

The first complete mitochondrial genome of Sumatran striped rabbit Nesolagus netscheri (Schlegel, 1880), and its phylogenetic relationship with other Leporidae.

Sci Rep

January 2025

Department of Biology, Faculty of Mathematics and Natural Science, University of Sriwijaya, Jalan Raya Prabumulih Km 32, Ogan Ilir, South Sumatera, 30682, Indonesia.

Nesolagus netscheri, a Sumatran striped rabbit, is one of the rarest rabbits in the Leporidae family, and its genetic information is still limited. This study provides the first mitochondrial genome and molecular systematic characterization of the Sumatran striped rabbit, Nesolagus netscheri, Indonesia's rarest rabbit. It consists of a circular double-stranded DNA of 16,709 bp.

View Article and Find Full Text PDF

Kinetoplastids are a clade of eukaryotic protozoans that include human parasitic pathogens like trypanosomes and Leishmania species. In these organisms, protein-coding genes are transcribed as polycistronic pre-mRNAs, which need to be processed by the coupled action of trans-splicing and polyadenylation to yield monogenic mature mRNAs. During trans-splicing, a universal RNA sequence, the spliced leader RNA (SL RNA) mini-exon, is added to the 5'-end of each mRNA.

View Article and Find Full Text PDF

Double-stranded RNA (dsRNA) mediated RNA interference (RNAi) is a tool in functional gene study and pest control. However, RNAi efficiency in Lepidoptera is low compared to the RNAi sensitive Coleoptera. Previous studies on RNAi in the silkworm Bombyx mori, the lepidopteran model insect, were performed by injection only.

View Article and Find Full Text PDF

AmelOBP4: an antenna-specific odor-binding protein gene required for olfactory behavior in the honey bee (Apis mellifera).

Front Zool

January 2025

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China.

Background: Odorant binding proteins (OBPs) initiate the process of odorant perception. Numerous investigations have demonstrated that OBPs bind a broad variety of chemicals and are more likely to carry pheromones or odor molecules with high binding affinities. However, few studies have investigated its effects on insect behavior.

View Article and Find Full Text PDF

The formation and architecture of surface-initiated polymer brush gene delivery complexes.

J Colloid Interface Sci

December 2024

School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom. Electronic address:

Understanding the architecture and mechanism of assembly of polyelectrolyte-nucleic acid complexes is critical to the rational design of their performance for gene delivery. Surface-initiated polymer brushes were recently found to be particularly effective at delivering oligonucleotides and maintaining high knock down efficiencies for prolonged periods of time, in highly proliferative cells. However, what distinguishes their binding capacity for oligonucleotides from that of larger therapeutic macromolecules remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!