The details of the relationship between brain function and metabolism in brain infarcts have not been studied. Using magnetoencephalography (MEG) and proton magnetic resonance spectroscopic imaging (1H MRSI), we localized sources of abnormal magnetic activities in ischemic brain regions and biochemical changes in suspected lesions showing pathological characteristics. Twelve patients with ischemic stroke were examined and the results of MEG and 1H MRSI were superimposed onto the corresponding MR images. The signal intensities of N-acetyl (NA) and lactate (Lac) were measured in the lesions with highly concentrated dipoles of slow wave activity. Eleven of 12 cases had increased slow wave activity in the cortical areas adjacent to the infarcts; 1 case was excluded because the infarct was too small (<1 cm in diameter). The signal intensity of NA in the regions with the highest slow wave activity was significantly reduced and was well correlated with the dipole density of slow waves. Though Lac was mildly accumulated in the lesions, the Lac level had no correlation with slow wave magnetic activity. The remaining and metabolically active cortical tissue showing NA signal produced the abnormal slow wave activity under lactic acidosis (mild accumulation of Lac).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ana.410420405 | DOI Listing |
Quant Imaging Med Surg
January 2025
Paul. C. Lauterbur Research Centers for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Background: Brain temperature signifies the thermal homeostasis of the tissue, and may serve as a marker for neuroprotective therapy. Currently, it remains challenging to map the human brain temperature with high spatial resolution. The thermal dependence of chemical exchange saturation transfer (CEST) effects of endogenous labile protons may provide a promising mechanism for the absolute brain temperature imaging.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Radiology and Nuclear Medicine Department, Erasmus MC, Rotterdam, The Netherlands.
Background: Gadolinium-based contrast agents (GBCAs) are usually employed for glioma diagnosis. However, GBCAs raise safety concerns, lead to patient discomfort and increase costs. Parametric maps offer a potential solution by enabling quantification of subtle tissue changes without GBCAs, but they are not commonly used in clinical practice due to the need for specifically targeted sequences.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Background: Deep learning (DL)-based adipose tissue segmentation methods have shown great performance and efficacy for adipose tissue distribution analysis using magnetic resonance (MR) images, an important indicator of metabolic health and disease. The aim of this study was to evaluate the reproducibility of whole-body adipose tissue distribution analysis using proton density fat fraction (PDFF) images at different MR strengths.
Methods: A total of 24 volunteers were imaged using both 1.
Pest Manag Sci
January 2025
School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China.
Background: Plant diseases cause huge losses in agriculture worldwide every year, but the prolonged use of current commercial fungicides has led to the development of resistance in plant pathogenic fungi. Therefore, there is an urgent need to develop new, efficient, and green fungicides.
Results: Twenty-three nootkatone-based thiazole-hydrazone compounds were designed, synthesized, and characterized by Fourier-transform infrared (FTIR), proton (H) nuclear magnetic resonance (NMR), carbon-13 (C) NMR, and high-resolution mass spectrometry (HRMS).
Commun Med (Lond)
January 2025
Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: Routine screening to detect silent but deadly cancers such as pancreatic ductal adenocarcinoma (PDAC) can significantly improve survival, creating an important need for a convenient screening test. High-resolution proton (1H) magnetic resonance spectroscopy (MRS) of plasma identifies circulating metabolites that can allow detection of cancers such as PDAC that have highly dysregulated metabolism.
Methods: We first acquired 1H MR spectra of human plasma samples classified as normal, benign pancreatic disease and malignant (PDAC).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!