The major attraction of fast-spin-echo (FSE) imaging is reduced acquisition time; however, careful review of the literature reveals many weaknesses: phase-encoded blurring, truncation artefact, bright fat signal, reduced magnetic susceptibility and increased motion artefact. Our aim was a prospective, blinded comparison of FSE and conventional spin echo (CSE) in the cervical spine. Both sequences were performed in 43 patients (19 males and 24 females; mean age 45 years, range 15-66 years). Twenty-eight patients were studied at 1.5 T and 15 at 0.5 T. Typical sequence parameters were: at 1.5 T, TR/TE 2000/90 CSE and 3000/120 FSE, and at 0.5 T, 2200/80 CSE and 2800/120 FSE. Time saved on the FSE was used to increase the matrix and the number of acquisitions. Two neuroradiologists evaluated the images for pathology, artefacts, disc signal intensity, thecal sac compression and image quality. Ten patients had cord lesions; 2 (20 %) were missed on CSE. In 4 of 10 patients with moderate/severe thecal sac compression, the degree of stenosis was apparently exaggerated on CSE. The mean degree of confidence for the CSE sequences was 1.8 and for the FSE 1.1, where 1 is optimal. For cervical spine imaging, FSE should be preferred to CSE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s003300050276 | DOI Listing |
J Magn Reson Imaging
January 2025
Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
Background: As ferroptosis is a key factor in renal fibrosis (RF), iron deposition monitoring may help evaluating RF. The capability of quantitative susceptibility mapping (QSM) for detecting iron deposition in RF remains uncertain.
Purpose: To investigate the potential of QSM to detect iron deposition in RF.
J Magn Reson Imaging
January 2025
Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China.
Background: Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability.
Purpose: To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity.
J Phys Chem Lett
January 2025
Soft Matter Biophysics, Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany.
Glycolipids are known to stabilize biomembrane multilayers through preferential sugar-sugar interactions that act as weak transient membrane cross-links. Here, we use small-angle and quasi-elastic neutron scattering on oligolamellar phospholipid vesicles containing defined glycolipid fractions in order to elucidate the influence of glycolipids on membrane mechanics and dynamics. Small-angle neutron scattering (SANS) reveals that the oligolamellar vesicles (OLVs) obtained by extrusion are polydisperse with regard to the number of lamellae, , which renders the interpretation of the quasi-elastic neutron spin echo (NSE) data nontrivial.
View Article and Find Full Text PDFInt J Gen Med
January 2025
School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, People's Republic of China.
Purpose: Conventional brain MRI protocols are time-consuming, which can lead to patient discomfort and inefficiency in clinical settings. This study aims to assess the feasibility of using artificial intelligence-assisted compressed sensing (ACS) to reduce brain MRI scan time while maintaining image quality and diagnostic accuracy compared to a conventional imaging protocol.
Patients And Methods: Seventy patients from the department of neurology underwent brain MRI scans using both conventional and ACS protocols, including axial and sagittal T2-weighted fast spin-echo sequences and T2-fluid attenuated inversion recovery (FLAIR) sequence.
Magn Reson Med
January 2025
Department 8.1 - Biomedical Magnetic Resonance, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
Purpose: To develop a low-cost, high-performance, versatile, open-source console for low-field MRI applications that can integrate a multitude of different auxiliary sensors.
Methods: A new MR console was realized with four transmission and eight reception channels. The interface cards for signal transmission and reception are installed in PCI Express slots, allowing console integration in a commercial PC rack.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!