Identification of the predominant non-native histidine ligand in unfolded cytochrome c.

Biochemistry

Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.

Published: October 1997

The heme and its two axial ligands, His18 and Met80, play a central role in the folding/unfolding mechanism of cytochrome c. Because of the covalent heme attachment, His18 remains bound under typical denaturing conditions, while the more labile Met80 ligand is replaced by an alternate histidine ligand. To distinguish between the two possible non-native histidine ligands in horse cytochrome c, variants with a His26 to Gln or His33 to Asn substitution were prepared using a yeast expression system. Protonation of the non-native histidine ligand in the GuHCl-denatured state results in a pronounced blue shift of the Soret heme absorbance band (low-spin to high-spin transition). While substitution of His26 has no effect on the apparent pKa of this transition (5.7 +/- 0.05), the H33N variant exhibits a substantially higher pKa (6.1 +/- 0.05), indicating that His33 is the dominant sixth heme ligand in denatured cytochrome c and that His26 (or another nitrogenous group) acts as a ligand in the absence of a histidine at position 33. The kinetics of the pH-induced ligand dissociation shows two phases which were assigned to each of the two histidine ligands on the basis of their distinct temperature dependence. Despite their nearly identical equilibrium unfolding transitions, the two histidine mutants show differences in their folding kinetics. While the kinetic behavior of H26Q cyt c is very similar to that of the wild-type, the H33N mutation leads to loss of a kinetic phase with a rate in the 2-10 s-1 range that has previously been attributed to the rate-limiting dissociation of a trapped non-native histidine, which is thus identified as His33.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi971697cDOI Listing

Publication Analysis

Top Keywords

non-native histidine
16
histidine ligand
12
histidine
8
histidine ligands
8
+/- 005
8
ligand
7
identification predominant
4
non-native
4
predominant non-native
4
ligand unfolded
4

Similar Publications

Engineered heme proteins exhibit excellent sustainable catalytic carbene transfer reactivities toward olefins for value-added cyclopropanes. However, unactivated and electron-deficient olefins remain challenging in such reactions. To help design efficient heme-inspired biocatalysts for these difficult situations, a systematic quantum chemical mechanistic study was performed to investigate effects of olefin substituents, non-native amino acid axial ligands, and natural and non-natural macrocycles with the widely used ethyl diazoacetate.

View Article and Find Full Text PDF

Cobalamin decyanation by the membrane transporter BtuM.

Structure

August 2024

Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, Groningen 9474 AG, the Netherlands. Electronic address:

BtuM is a bacterial cobalamin transporter that binds the transported substrate in the base-off state, with a cysteine residue providing the α-axial coordination of the central cobalt ion via a sulfur-cobalt bond. Binding leads to decyanation of cobalamin variants with a cyano group as the β-axial ligand. Here, we report the crystal structures of untagged BtuM bound to two variants of cobalamin, hydroxycobalamin and cyanocobalamin, and unveil the native residue responsible for the β-axial coordination, His28.

View Article and Find Full Text PDF

Engineering non-native metal active sites into proteins using canonical amino acids offers many advantages but is hampered by significant challenges. The TIM barrel protein, imidazole glycerol phosphate synthase from the hyperthermophilic organism Thermotoga maritima (tHisF), is well-suited for the construction of artificial metalloenzymes by this approach. To this end, we have generated a tHisF variant (tHisF) with a Glu/His/His motif for metal ion coordination.

View Article and Find Full Text PDF

Electric field-induced functional changes in electrode-immobilized mutant species of human cytochrome c.

Biochim Biophys Acta Bioenerg

October 2022

Instituto de Investigaciones Químicas, cicCartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Américo Vespucio 49, 41092 Sevilla, (Spain). Electronic address:

Post-translational modifications and naturally occurring mutations of cytochrome c have been recognized as a regulatory mechanism to control its biology. In this work, we investigate the effect of such in vivo chemical modifications of human cytochrome c on its redox properties in the adsorbed state onto an electrode. In particular, tyrosines 48 and 97 have been replaced by the non-canonical amino acid p-carboxymethyl-L-phenylalanine (pCMF), thus mimicking tyrosine phosphorylation.

View Article and Find Full Text PDF

Myoglobin has recently emerged as a versatile metalloprotein scaffold for the design of efficient and selective biocatalysts for abiological carbene transfer reactions, including asymmetric cyclopropanation reactions. Over the past few years, our group has explored several strategies to modulate the carbene transfer reactivity of myoglobin-based catalysts, including the substitution of the native heme cofactor and conserved histidine axial ligand with non-native porphynoid ligands and alternative natural and unnatural amino acids as the metal-coordinating ligands, respectively. Herein, we report protocols for the generation and reconstitution in vitro and in vivo of myoglobin-based artificial carbene transferases incorporating non-native iron-porphynoid cofactors, also in combination with unnatural amino acids as the proximal ligand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!