The ATP-sensitive, inwardly rectifying K+ channel, ROMK, has been suggested to be the low-conductance ATP-sensitive K+ channel identified in apical membranes of mammalian renal thick ascending limb (TAL) and cortical collecting duct (CCD). Mutations in the human ROMK gene (KIR 1.2) have been identified in kindreds with neonatal Bartter's syndrome. In the present study, we generated polyclonal antibodies raised against both a COOH-terminal (amino acids 252-391) ROMK-maltose binding protein (MBP) fusion protein and an NH2-terminal (amino acids 34-49) ROMK peptide. Affinity-purified anti-ROMK COOH-terminal antibody detected the 45-kDa ROMK protein in kidney tissues and HEK-293 cells transfected with ROMK1 cDNA. The antibody also recognized 85- to 90-kDa proteins in kidney tissue; these higher molecular weight proteins were abolished by immunoabsorption with ROMK-MBP fusion protein and were also detected on Western blots using anti-ROMK NH2-terminal antibody. Immunofluoresence studies using anti-ROMK COOH-terminal antibody showed intense apical staining along the loop of Henle and distal nephron; staining with preimmune and immunoabsorbed serum was negative. When colocalized with distal nephron markers [the thiazide-sensitive cotransporter (rTSC1), the bumetanide-sensitive cotransporter (rBSC1), the vacuolar type H(+)-ATPase, and neuronal nitric oxide synthase (NOS I)], the ROMK protein was found primarily at the apical border of cells in the TAL, macula densa, distal convoluted tubule, and connecting tubule. Within the CCD, the ROMK protein was expressed in principal cells and was absent from intercalated cells. The tubule localization and polarity of ROMK staining are consistent with the distribution of ROMK mRNA and provide more support for ROMK being the low-conductance K+ secretory channel in the rat distal nephron.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.1997.273.5.F739DOI Listing

Publication Analysis

Top Keywords

romk protein
16
distal nephron
12
romk
9
protein apical
8
apical membranes
8
amino acids
8
fusion protein
8
anti-romk cooh-terminal
8
cooh-terminal antibody
8
protein
7

Similar Publications

Introduction: Milan hypertensive strain (MHS) of rat represents as one of the ideal rat models to study the genetic form of hypertension associated with aberrant renal salt reabsorption. In contrast to Milan normotensive strain (MNS), MHS rats possess missense mutations in three adducin genes and develop hypertension at 3 months old due to upregulation of sodium-chloride cotransporter (NCC). At pre-hypertensive stage (23-25 days old), MHS rats show enhanced protein abundance of Na+-K+-2Cl- cotransporter (NKCC2) but retain blood pressure comparable to MNS probably through enhanced GFR and reduced NCC and α-subunit of epithelial sodium channel (α-ENaC) expressed in distal convoluted tubule (DCT) and collecting duct (CD).

View Article and Find Full Text PDF

K secretion in the distal nephron has a critical role in K homeostasis and is the primary route by which K is lost from the body. Renal K secretion is enhanced by increases in dietary K intake and by increases in tubular flow rate in the distal nephron. This review addresses new and important insights regarding the mechanisms underlying flow-induced K secretion (FIKS).

View Article and Find Full Text PDF

Background: This study investigates angiotensin II (Ang II)'s regulatory mechanism on renal outer medullary potassium channel (ROMK) activity in the distal convoluted tubule (DCT) during low potassium intake, focusing on the Janus kinase 2 (JAK2) pathway activation mediated by the Ang II type 1 receptor (AT1R).

Methods: Utilizing a low potassium diet mouse model, various methods including patch clamping, reverse transcription-quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining were applied to analyze ROMK channel activity and the expression of related proteins.

Results: The findings reveal that Ang II inhibits ROMK activity in the DCT2 membrane through AT1R activation, with the JAK2 pathway playing a central role.

View Article and Find Full Text PDF
Article Synopsis
  • - Proton pump inhibitors (PPIs) are commonly used medications but can cause serious electrolyte imbalances, particularly low magnesium (hypomagnesaemia), which can lead to additional issues like low calcium (hypocalcaemia) and low potassium (hypokalaemia).
  • - Long-term PPI use disrupts intestinal pH and interferes with magnesium transport mechanisms, which can lead to increased potassium loss and complications in calcium regulation.
  • - These electrolyte imbalances can become severe and resistant to typical supplementation efforts, posing significant health risks for some patients who rely on chronic PPI therapy.
View Article and Find Full Text PDF

Hypertension affects one billion people worldwide and is the most common risk factor for cardiovascular disease, yet a comprehensive picture of its underlying genetic factors is incomplete. Amongst regulators of blood pressure is the renal outer medullary potassium (ROMK) channel. While select ROMK mutants are prone to premature degradation and lead to disease, heterozygous carriers of some of these same alleles are protected from hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!