The effects of separate and combined endopeptidase inhibition (by SCH-32615) and natriuretic peptide receptor C blockade [by C-ANP-(4-23)] on the clearance and bioactivity of atrial (ANP) and brain (BNP) natriuretic peptides was investigated in eight sheep with heart failure. SCH-32615 and C-ANP-(4-23) administered separately induced significant and proportionate dose-dependent rises in plasma ANP, BNP, and guanosine 3',5'-cyclic monophosphate (cGMP) levels. Associated with these changes were reductions in arterial pressure, left atrial pressure, and peripheral resistance and increases in cardiac output, urine volume, sodium excretion, and creatinine clearance. SCH-32615 induced greater diuresis and natriuresis than C-ANP-(4-23). Combined administration of SCH-32615 and C-ANP-(4-23) induced greater than additive rises in plasma ANP, BNP, and cGMP concentrations, with enhanced hemodynamic effects, diuresis, and natriuresis and reduced plasma aldosterone levels. In conclusion, we find that the enzymatic and receptor clearance pathways contribute equally to the metabolism of endogenous ANP and BNP in sheep with heart failure. Combined inhibition of both degradative pathways was associated with enhanced hormonal, hemodynamic, and renal effects and may have greater potential therapeutic value than either agent separately.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.1997.273.5.H2372DOI Listing

Publication Analysis

Top Keywords

heart failure
12
anp bnp
12
natriuretic peptide
8
sheep heart
8
sch-32615 c-anp-4-23
8
rises plasma
8
plasma anp
8
induced greater
8
diuresis natriuresis
8
clearance
4

Similar Publications

Use of SGLT2 Inhibitors in Frail Older Adults is Associated with Increased Survival: A Retrospective Study.

Curr Pharm Des

January 2025

Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.

Background: In recent years, sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as a valuable treatment for type 2 diabetes (T2D) and heart failure. Despite these medications seeming to be safe in older people, the literature about SGLT2i and frailty is still limited. This study aims to evaluate whether SGLT2i use is associated with increased survival in older adults and if frailty can affect the findings.

View Article and Find Full Text PDF

Background: The effect of pregnancy on individuals with hypertrophic cardiomyopathy (HCM) is not well investigated.

Objectives: The purpose of this study was to assess the impact of pregnancy on all-cause mortality and clinical outcomes among individuals with HCM.

Methods: Using the TriNetX research network, we identified individuals within reproductive age (≥18-45 years) with a diagnosis of HCM between 2012 and 2022 (n = 10,936).

View Article and Find Full Text PDF

We describe a 54-year-old man with type 2 diabetes mellitus, ischemic myopathy, pulmonary hypertension, and end-stage renal disease who was admitted for heart failure and listed for a dual cardiac-renal transplantation. Extensive calcification in the iliac arteries prevented clamping. Proximal endovascular balloon control of the left iliac artery was achieved using contralateral access; distal control was established by passing a Fogarty catheter distally through an iliac arteriotomy, later used for anastomosis of the cadaveric conduit.

View Article and Find Full Text PDF

The intertwined nature of cardiac and renal failure, where dysfunction in one organ predicts a poor outcome in the other, has long driven the interest in uncovering the exact molecular links between the two. Elucidating the mechanisms driving Cardiorenal Syndrome (CRS) will enable the development of targeted therapies that disrupt this detrimental cycle, potentially improving outcomes for patients. A recent study by Chatterjee .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!