Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previous studies in enterocytes isolated from the villus region of small intestinal epithelium have identified a macroscopic current carried by Cl-. In this work a single-channel patch-clamp study was carried out in the same cells, and a spontaneously active, outwardly rectifying Cl- channel was identified and proposed to underlie the whole cell current. The channel had conductances of 62 and 19 pS at 80 and -80 mV, respectively, in symmetrical Cl- solutions in excised patches. Similar activity was seen in cell-attached patches, but only outward currents could be discerned in this configuration. The activity of the channel, measured as open probability, was independent of intracellular calcium levels and voltage. The selectivity sequence for different anions was SCN- > I- > Br- > Cl- > F- > (gluconate, glutamate, SO4(2-)). The channel was inhibited by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), verapamil, and 4-hydroxytamoxifen (but not by tamoxifen), with potencies similar to those observed for Cl- channels previously described in other cells. Inhibition by trinitrophenyladenosine 5'-triphosphate was also observed but only at depolarized potentials. At 50 mV the half-maximal inhibitory concentration was 18 nM. It is proposed that this channel plays a role in transepithelial Cl- transport and certain regulatory Cl- fluxes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.1997.273.5.G1141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!