Specific inhibition of cardiac and skeletal muscle sarcoplasmic reticulum Ca2+ pumps by H-89.

Biochem Pharmacol

SmithKline Beecham Laboratoires Pharmaceutiques, Sainte-Grégoire, France.

Published: November 1997

The isoquinolinesulfonamide H-89, an inhibitor of cyclic AMP-dependent protein kinases (EC 2.7.1.37, cAPrK), inhibited the Ca2+-ATPase activity of cardiac and skeletal muscle sarcoplasmic reticulum (SR) with concentrations giving half-maximal inhibition of 8.1 +/- 1.3 and 7.2 +/- 0.9 micromol/L, respectively. The effect of H-89 on cardiac SR Ca2+-ATPase (EC 3.6.1.38) was the same irrespective of the presence or absence of inhibitors of cAPrK and furthermore, was not affected by a neutralising monoclonal antibody raised against phospholamban. Thus, the action of H-89 in inhibiting SR Ca2+-ATPase would not appear to be mediated by inhibition of cAPrK to reduce the phosphorylation state of phospholamban. In both cardiac and skeletal muscle SR, the inhibition by H-89 was noncompetitive with respect to ATP at a low concentration of ATP (<1 mmol/L) and of a mixed pattern at high concentrations of ATP. H-89 produced a decrease in affinity of the SR Ca2+ pump to Ca2+ with an increase in the Km for Ca from 0.52 +/- 0.01 to 0.94 +/- 0.03 micromol/L (P < 0.05) in cardiac SR and from 0.39 +/- 0.01 to 0.79 +/- 0.02 micromol/L (P < 0.05) in skeletal muscle SR. These results suggest that H-89 inhibits SR Ca2+-ATPase by a direct action on the SR Ca2+ pump to decrease its affinity to Ca2+. Such an action may contribute to the pharmacological effect of H-89.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-2952(97)00320-1DOI Listing

Publication Analysis

Top Keywords

cardiac skeletal
12
skeletal muscle
12
muscle sarcoplasmic
8
sarcoplasmic reticulum
8
h-89
5
specific inhibition
4
cardiac
4
inhibition cardiac
4
reticulum ca2+
4
ca2+ pumps
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!