A major human immunodeficiency virus type 1-initiated killing pathway distinct from apoptosis.

J Virol

Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA.

Published: December 1997

We have investigated the relative contribution of apoptosis or programmed cell death (PCD) to cell killing during acute infection with T-cell-tropic, cytopathic human immunodeficiency virus type 1 (HIV-1), by employing diverse strategies to inhibit PCD or to detect its common end-stage sequelae. When Bcl-2-transfected cell lines were infected with HIV-1, their viability was only slightly higher than that of control infections. Although the adenovirus E1B 19-kDa protein has been reported to be a stronger competitor of apoptosis than Bcl-2, it did not inhibit HIV-mediated cell death better than Bcl-2 protein. Competition for Fas ligand or inactivation of the Fas pathway secondary to intracellular mutation (MOLT-4 T cells) also had modest effects on overall cell death during acute HIV infection. In contrast to these observations with HIV infection or with HIV envelope-initiated cell death, Tat-expressing cell lines were much more susceptible (200% enhancement) to Fas-induced apoptosis than controls and Bcl-2 overexpression strongly (75%) inhibited this apoptotic T-cell death. PCD associated with FasR ligation resulted in the cleavage of common interleukin-1beta-converting enzyme (ICE)-protease targets, poly(ADP-ribose) polymerase (PARP) and pro-ICE, whereas cleaved products were not readily detected during HIV infection of peripheral blood mononuclear cells or T-cell lines even during periods of extensive cell death. These results indicate that one important form of HIV-mediated cell killing proceeds by a pathway that lacks the characteristics of T-cell apoptosis. Our observations support the conclusion that at least two HIV genes (env and tat) can kill T cells by distinct pathways and that an envelope-initiated process of T-cell death can be discriminated from apoptosis by many of the properties most closely associated with apoptotic cell death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC230285PMC
http://dx.doi.org/10.1128/JVI.71.12.9753-9763.1997DOI Listing

Publication Analysis

Top Keywords

cell death
24
hiv infection
12
cell
10
human immunodeficiency
8
immunodeficiency virus
8
virus type
8
death
8
death pcd
8
cell killing
8
cell lines
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!