The sequence variability of viral structure polypeptides has been associated with immune escape mechanisms. The V1 region of simian immunodeficiency virus (SIV) is a highly variable region of the SIVmac env gene. Here, we describe the V1 region as a linear neutralizing epitope. V1 region-specific neutralizing antibodies (NAb) were first demonstrated in a rabbit infected with a recombinant vaccinia virus carrying the env gene of human immunodeficiency virus type 2 strain ben (HIV-2ben). Since we detected in this animal V1 region-specific NAb that were able to neutralize not only human immunodeficiency virus type 2 but also SIVmac32H, we investigated whether a similar immune response is evoked in macaques (Macaca mulatta) either infected with SIVmac or immunized with the external glycoprotein (gp130) of the same virus. Distinctly lower NAb titers were found in the SIVmac-infected animals than in the gp130-immunized macaques. Since the NAb titers in both groups were high enough for competition experiments, we used five overlapping peptides encompassing the whole V1 region for a detailed identification of the epitope. In each of the 12 macaques investigated, we detected a high level of NAb reacting with at least one peptide located in the central part of the V1 region. The relatively high degree of divergence, especially within the central part of the V1 region, which characterized the evolution of the retroviral sequences from the original inoculum in the infected macaques suggests the development of escape mutants. Furthermore, 3 of 12 animals developed NAb directed against the amino-terminal end of the V1 region epitope. Sequence analysis, however, revealed relatively low levels of genetic drift and genetic variability within this part of the V1 region. The induction of V1 env-specific NAb not only in gp130-immunized macaques but also in SIVmac-infected animals in combination with the increased genetic variability of this region in vivo indicates a marked biological significance of this epitope for the virus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC230253 | PMC |
http://dx.doi.org/10.1128/JVI.71.12.9475-9481.1997 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!