Reconstitution of beef heart mitochondrial F0F1 in reverse phase evaporation vesicles.

Biochim Biophys Acta

Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse, NY 13210, USA.

Published: October 1997

Beef heart mitochondrial F0F1 was reconstituted in proteoliposomes by a new procedure. MF0F1 was inserted in preformed reverse phase evaporation vesicles of large diameters prepared from asolectin (MF0F1-REV). Reconstitution was mediated by Triton X-100, which was subsequently removed by treatment with Bio-Beads. Parameters which resulted in optimal reconstitution were described. The MF0F1-REV proteoliposomes catalyzed an exchange between Pi and ATP and were capable of proton pumping. Both reactions were inhibited by oligomycin and uncoupler of oxidative phosphorylation. The range of Pi-ATP exchange activity of the proteoliposomes (70-110 nmol min[-1] mg[-1]) compared favorably with activities obtained in vesicles reconstituted by cholate dialysis or cholate dilution. The most important aspect of this method is that, unlike other reconstitution methods, exogenous F1 and other coupling factors are not required to obtain high Pi-ATP exchange activity by MF0F1-REV. This simple and rapid reconstitution procedure should be useful for future studies dealing with functional analysis of MF0F1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0005-2736(97)00123-5DOI Listing

Publication Analysis

Top Keywords

beef heart
8
heart mitochondrial
8
mitochondrial f0f1
8
reverse phase
8
phase evaporation
8
evaporation vesicles
8
pi-atp exchange
8
exchange activity
8
reconstitution
5
reconstitution beef
4

Similar Publications

Effectiveness of newly isolated bacteriophages targeting multidrug-resistant Extraintestinal Pathogenic Escherichia coli strain (TZ1_3) in food preservation and mice health modulation.

Food Chem

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China. Electronic address:

Bacteriophages are promising alternatives for combating multidrug-resistant bacterial infections. Two lytic bacteriophages, named P1 and P3, targeting pathogenic Escherichia coli (ExPEC; strain TZ1_3) were isolated and evaluated for their potential ability to control pathogenic numbers either in ExPEC-contaminated food or ExPEC-infected mice. Results showed that phages significantly reduced ExPEC numbers within 6 and 12 h in contaminated water, milk, beef, and chicken when applied at 10 plaque-forming units (PFU).

View Article and Find Full Text PDF

The National Beef Quality Audit ()-2022 serves as a benchmark of the current market cow and bull sectors of the U.S. beef industry and allows comparison to previous audits as a method of monitoring industry progress.

View Article and Find Full Text PDF

The phenomenon of population aging in China has evolved into an irreversible trend. The state places significant emphasis on the health-related initiatives for the elderly and has implemented pertinent policies. This study aims to identify the primary health issues affecting the elderly population in China, ascertain the key risk factors influencing their health, and offer a scientific foundation for the government to develop ongoing policies and strategies, as well as to allocate health resources efficiently.

View Article and Find Full Text PDF

Changes in maternal nutrition during the periconceptional period can influence postnatal growth in cattle. This study aimed to identify the impact of supplementing beef cows with rumen-protected methionine (RP-Met) during the periconceptional period on their female progeny. In exp 1, plasma methionine (Met) levels were analyzed in samples from 10 Angus crossbred, non-lactating beef cows.

View Article and Find Full Text PDF

Revisiting the Role of Carnitine in Heart Disease Through the Lens of the Gut Microbiota.

Nutrients

December 2024

Unité Mixte de Recherche Procédés Alimentaires et Microbiologiques (UMR PAM), Institut Agro, Institut National de Recherche Pour L'agriculture, L'alimentation et L'environnement (INRAE), Université de Bourgogne, 21000 Dijon, France.

L-Carnitine, sourced from red meat, dairy, and endogenous synthesis, plays a vital role in fatty acid metabolism and energy production. While beneficial for cardiovascular, muscular, and neural health, its interaction with the gut microbiota and conversion into trimethylamine (TMA) and trimethylamine N-oxide (TMAO) raise concerns about heart health. TMAO, produced through the gut-microbial metabolism of L-carnitine and subsequent liver oxidation, is associated with cardiovascular risks, including atherosclerosis, heart attacks, and stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!