The genes encoding alpha- and beta-subunits of a V-type ATPase in a sulfur-dependent hyperthermophilic archaeum, Thermococcus sp. KI, were cloned and sequenced. The deduced amino acid sequences were approximately 60, 50 and 25% identical to those of other archaeal, eukaryotic V-type and E. coli F-type ATPase, respectively. Phylogenetic analysis revealed that Thermococcus ATPase was closely related to that of Thermus, and those of Methanosarcina and Halobacterium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0005-2736(97)00138-7 | DOI Listing |
Nat Commun
January 2025
Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.
Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive.
View Article and Find Full Text PDFFoods
January 2025
Department of Digestive Tract Diseases, Norbert Barlicki Memorial University Hospital, 90-153 Lodz, Poland.
Background: Celiac disease (CD) is a chronic, permanent, gluten-dependent disease that manifests itself with inflammation of the small intestine and malabsorption in genetically predisposed individuals with HLA-DQ2 and -DQ8 (human leukocyte antigen) histocompatibility antigens.
Objective: The diagnostic criteria for celiac disease have undergone numerous modifications over the years. The aim of the study is to evaluate the frequency of HLA-DQ2/DQ8 genes in a group of patients with celiac disease diagnosed in 1980-2010 in order to verify the primary diagnosis of CD.
Biochim Biophys Acta Bioenerg
January 2025
Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan. Electronic address:
The F domain of FF-ATP synthases/ATPases (FF) possesses three catalytic sites on the three αβ interfaces, termed αβ, αβ, and αβ, located mainly on the β subunits. The enzyme also has three non-catalytic ATP-binding sites on the three αβ interfaces, located mainly on the α subunits. When ATP does not bind to the non-catalytic site, FF becomes significantly prone to ADP inhibition, ultimately resulting in the loss of ATPase activity.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
Institute of Basic Medical Sciences of the Chinese Academy of Medical Sciences, School of Basic Medicine, Center of Excellence in Tissue Engineering of Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory, PekingBeijing, 100730, China.
Background: Luteinizing hormone (LH) plays a crucial role in the postnatal development and maturation of gonads. Inactivating mutations of the luteinizing hormone beta subunit (LHB)gene are extremely rare and can result in congenital hypogonadotropic hypogonadism (CHH).
Methods: We conducted DNA sequencing on an 18-year-old female patient with undetectable LH and clinical symptoms of CHH.
Crit Rev Clin Lab Sci
January 2025
Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK.
We present a series of three articles on the genetics and pharmacogenetics of G protein- coupled receptors (GPCR). In the first article, we discuss genetic variants of the G protein subunits and accessory proteins that are associated with human phenotypes; in the second article, we build upon this to discuss "G protein-coupled receptor (GPCR) gene variants and human genetic disease" and in the third article, we survey "G protein-coupled receptor pharmacogenomics". In the present article, we review the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane in the context of human genetic disease resulting from pathogenic variants of accessory proteins and G proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!