The spectrum (the purple blue transition) and function of the light-driven proton pump bacteriorhodopsin are determined by the state of protonation of the Asp-85 residue located in the vicinity of the retinal chromophore. The titration of Asp-85 is controlled by the binding/unbinding of one or two divalent metal cations (Ca2+ or Mg2+). The location of such metal binding site(s) is approached by studying the kinetics of the cation-induced titration of Asp-85 using metal ions and large molecular cations, such as quaternary ammonium ions, R4N+ (R = Et, Pr, a divalent 'bolaform ion' [Et3N+-(CH2)4-N+Et3] and the 1:3 molecular complex formed between Fe2+ and 1,10-phenanthroline (OP). The basic multi-component kinetic features of the titration, extending from 10(-2) to 10(4) s, are unaffected by the charge and size of the cation. This indicates that cation binding to bR triggers the blue --> purple titration in a fast step, which is not rate-determining. In view of the size of the cations involved, these observations indicate that the cation binding site is in an exposed location on, or close to, the membrane surface. This excludes previous models, which placed the color-controlling Ca2+ ion in the retinal binding pocket.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(97)01194-0 | DOI Listing |
Adv Biotechnol (Singap)
February 2024
CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.
Pichia pastoris is a popular yeast host for high-level heterologous expression of proteins on an industrial scale owing to its reliable expression, robust growth, high fermentation density, and easy genetic manipulation and cultivation at a relatively low cost. Of particular interest is its high secretion efficiency for small proteins including insulin, human serum albumin, vaccines, enzymes, and llama-derived heavy-chain only antibodies (nanobodies) for pharmaceutical and research applications. However, a recurring challenge in using P.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
The pore-forming enterotoxin (CPE), a common cause of foodborne diseases, facilitates Ca influx in enterocytes, leading to cell damage. Upon binding to certain claudins (e.g.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, Key Laboratory of Polymer Ecomaterials, 5625 Renmin Street, Changchun, , 130022, Changchun, CHINA.
Living cationic polymerization (LCP) is a classical technique for precision polymer synthesis; however, due to the high sensitivity of cationic active species towards chain-transfer/termination events, it is notoriously difficult to control polymerization under mild conditions, which inhibits its progress in advanced materials engineering. Here, we unlock a practical anion-binding catalytic strategy to address the historical dilemma in LCP. Our experimental and mechanistic studies demonstrate that commercially accessible hexafluoroisopropanol (HFIP), when used in high loading, can create higher-order HFIP aggregates to tame dormant-active species equilibrium via non-covalent anion-binding principle, in turn inducing distinctive polymerization kinetics behaviors that grant efficient chain propagation while minimizing competitive side reactions.
View Article and Find Full Text PDFMed J Armed Forces India
August 2024
Head of Nephrology Division, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr. Moestopo No.47, Pacar Kembang, Kec. Tambaksari, Surabaya, Jawa Timur, Indonesia.
Hyperkalemia, characterized by elevated serum potassium levels, poses significant health risks, including life-threatening cardiac arrhythmias. The management of hyperkalemia has evolved, incorporating calcium polystyrene sulfonate (CPS) and newer agents such as sodium zirconium cyclosilicate (SZC) and patiromer alongside traditional treatments. This review provides a comprehensive examination of current management strategies for hyperkalemia, focusing on the comparative effectiveness, safety profiles, and patient preferences concerning CPS, SZC, and patiromer.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Engineering, POSTECH, Pohang, 37673, Republic of Korea.
Liquid crystals (LCs) are widely used as promising stimuli-responsive materials due to their unique combination of liquid and crystalline properties, providing the capability to sense even molecular-scale events and amplify them into macroscopic optical outputs. However, encoding a high level of selectivity to a specific intermolecular event remains a key challenge, leading to prior studies regarding chemically functionalized LC interfaces. Herein, we propose an integrative strategy to significantly advance the design of chemo-responsive LCs through a deep fundamental understanding on the orientational coupling of LCs with new functional molecules, organic ionic plastic crystals (OIs), presented at LC interfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!