Embryonic germ (EG) cells are undifferentiated stem cells isolated from cultured primordial germ cells (PGC). To date, EG cells have been isolated only in the mouse. Murine EG cells share several characteristics with embryonic stem (ES) cells, including morphology, pluripotency, and the capacity for germline transmission. We report here the isolation of porcine EG cells. PGC collected from Day 24 or 25 porcine embryos were cultured on mitotically inactivated murine fibroblasts. Four EG cell lines were isolated from repeated subculture of porcine PGC. Porcine EG cells morphologically resembled murine ES cells and consistently expressed alkaline phosphatase activity. These cell lines maintained a normal diploid karyotype and survived after cryopreservation. Porcine EG cells were capable of differentiating into a wide range of cell types in culture, including endodermal, trophoblast-like, epithelial-like, fibroblast-like, and neuron-like cells. In suspension culture, porcine EG cells formed embryoid bodies. When injected into host blastocysts, the EG cells were able to differentiate and contribute to tissues of a chimeric piglet. Both in vitro and in vivo evidence demonstrates that the isolated EG cells were pluripotent. These cells are potentially useful for genetic manipulation in pigs.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod57.5.1089DOI Listing

Publication Analysis

Top Keywords

cells
17
porcine cells
16
stem cells
12
germ cells
12
primordial germ
8
cells isolated
8
cells pgc
8
murine cells
8
cell lines
8
porcine
7

Similar Publications

The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.

View Article and Find Full Text PDF

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Backbone resonance assignments of PhoCl, a photocleavable protein.

Biomol NMR Assign

January 2025

High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.

PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!