Cytochrome P-450 reductase (encoded by the NCP1 gene) was found to catalyse all the NADPH-dependent ferrireductase activities associated with isolated plasma membranes of the yeast Saccharomyces cerevisiae. We therefore examined the contribution of this enzyme to the ferrireductase activity of cells in vivo. Cytochrome P-450 reductase was shown to be not essential for the cell ferrireductase activity, but it influenced this activity, with different effects on the Fre1- and the Fre2-dependent reductase systems. Overexpression of FRE1 did not lead to an increased ferrireductase activity of the cells when NCP1 was repressed. In contrast, cells that overexpressed FRE2 had maximal ferrireductase activity when NCP1 was repressed. The degree of NCP1 expression also affected the amount of iron and copper accumulated by the cells during growth. The biochemical implications and the physiological significance of these observations are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.1997.tb12720.xDOI Listing

Publication Analysis

Top Keywords

ferrireductase activity
20
cytochrome p-450
12
p-450 reductase
12
associated isolated
8
isolated plasma
8
plasma membranes
8
saccharomyces cerevisiae
8
activity cells
8
ncp1 repressed
8
ferrireductase
6

Similar Publications

The rise of atmospheric oxygen as a result of photosynthesis in cyanobacteria and chloroplasts has transformed most environmental iron into the ferric state. In contrast, cells within organisms maintain a reducing internal milieu and utilize predominantly ferrous iron. Ferric reductases are enzymes that transfer electrons to ferric ions, either extracellularly or within endocytic vesicles, enabling cellular ferrous iron uptake through Divalent Metal Transporter 1.

View Article and Find Full Text PDF
Article Synopsis
  • Ferric Reductase Oxidase (FRO) genes are crucial for iron uptake in plants, and a study identified and analyzed 65 FRO homologs in four cotton species, revealing conserved functions and structures of these proteins.
  • *The research showed that FRO proteins are mainly localized to the plasma membrane and highlighted their evolutionary patterns through phylogenetic analysis, as well as variations in gene structure and chromosomal distribution.
  • *Additionally, expression profiling indicated that GhFRO interacts with specific proteins for metal ion transport and showed significant downregulation in response to stress conditions, offering valuable insights into iron homeostasis and stress adaptations in cotton.
View Article and Find Full Text PDF

Pathogenic fungi must appropriately sense the host availability of essential metals such as Fe. In Candida albicans and other yeasts, sensing of Fe involves mitochondrial Fe-S clusters. Yeast mutants for Fe-S cluster assembly sense Fe limitation even when Fe is abundant and hyperaccumulate Fe.

View Article and Find Full Text PDF

Quercetin promotes the recovery of iron chlorosis in strawberry plants.

Plant Physiol Biochem

December 2024

MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Faculty of Science and Technology, Building 8, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.

Iron (Fe) chlorosis is very common in plants cultivated in calcareous soils of the Mediterranean basin and is usually corrected by the application of Fe chelates to the soil, which can have a negative impact on the environment. The aim of this experiment was to assess the role of quercetin, a natural compound widely present in plants and known to bind Fe, in correcting Fe chlorosis when supplied in the Hoagland nutrient solution. In this context, strawberry plants were grown at different Fe concentrations, with 0 (Fe0), 1 (Fe1) and 5 (Fe5) μM of Fe in the nutrient solution, until the onset of clear Fe chlorosis symptoms.

View Article and Find Full Text PDF

Alpha-synuclein (α-syn) is a major component of Lewy bodies, which is a biomarker of Parkinson's disease (PD). It accumulates in substantia nigra pars compacta (SNpc) to form insoluble aggregates and cause neurotoxicity, which is often accompanied by iron deposition. We compared the iron reductase activity between monomeric α-syn (M-α-syn) and oligomeric α-syn (O-α-syn) and investigated the effect of α-syn on iron metabolism of BV2 microglia cells as well.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!